
Planning Non-repetitive Robotic Assembly Processes with

Task and Motion Planning (TAMP)

Pok Yin Victor Leung1[0000-0003-1536-8636], Yijiang Huang1,2 [0000-0003-1820-2535] , Caelan

Garret2[0000-0002-6474-1276], Fabio Gramazio1[0000-0002-3761-7675], Matthias Kohler1 [0000-0002-

4111-4122]

1 ETH Zurich, Switzerland
2 MIT, USA 3 NVIDIA Research, USA

Abstract. Many recent examples of robotic construction are still planned using

separate task and motion planning approaches. This separation makes it hard to

create efficient action sequences, especially for non-repetitive assembly pro-

cesses. TAMP is a more advanced planning approach that integrates task and

planning to optimize action sequences while ensuring collision-free robotic tra-

jectories.

The paper demonstrates the benefit of TAMP through a real-world case study

based on a robotically constructed pavilion. This paper explains the technical de-

tails of TAMP and how it can be applied using a TAMP solver, PDDLStream.

Six planning experiments with increasing complexity are created with Planning

Domain Definition Language (PDDL) using an incremental programming ap-

proach that is intuitive to understand. Robotic execution time was collected from

the actual construction, and the results show an estimated 16% reduction in exe-

cution time using TAMP compared to traditional task planning approaches like

flowcharts. The flexibility of PDDLStream to include other planning considera-

tions is also discussed for future research opportunities.

Keywords: Robotic Assembly, Task and Motion Planning, PDDL.

1 Introduction

Traditional paradigm for programming industrial robots is not suitable for architectural

fabrication where non-repetitive tasks are often necessary for unique geometries. In-

stead, automated planning and validation are essential for non-repetitive robotic pro-

grams.

When discussing non-repetitive robotic programs, it is necessary to distinguish be-

tween the action template and the geometric targets. The action template (also known

as a task template) is a list of sequentially executed actions, while geometric targets are

descriptions that complement some actions, such as robotic movements. Figure 1 shows

an example of an action template with four actions and two geometric targets for a

simple construction process. Note that the two movement actions are accompanied by

geometric targets that specify the target pose (position and orientation) at which the end

effector will reach.

2

Fig. 1. Example of an action template and geometric targets represented symbolically (left) and

in ABB RAPID language (right)

Using a single repetitive action template with a flexible geometric input allows the as-

sembly of mass customized objects. However, structures created with this approach

were often limited to a fixed topology. A more advanced customization approach is to

use multiple snippets of action templates. For example, to construct a column-beam

structure, two template snippets can be used. One snippet can be responsible for the

“Column Assembly” while another for the “Beam Assembly”. The selection and se-

quence of template snippets can be automated using computational logic based on the

properties of a structure. In the computer science (CS) community, such process of

selecting and scheduling actions is called task planning or symbolic planning.

Explicitly scripted conditional logic such as flowcharts (Huang et al. 2021) and be-

havior trees (Ögrevn and Colledanchise 2018) work well with construction tasks that

have limited variations (Wagner et al. 2020). However, these approaches are not flexi-

ble enough when dealing with problems with many possible action sequences and in-

terdependency (Garrett et al. 2020). Manually scripted action templates and the

flowchart logic are often less than optimal. For these scenarios, new approaches that

consider collisions and reachability are necessary (Hartmann et al. 2023).

Fig. 2. Diagram showing the introduction of flexibility to the action templates and geometric

targets.

The focus of this paper is to explore the application of Task and Motion Planning

(TAMP) (Garrett et al. 2021), a state-of-art planning method developed in the CS com-

munity to a construction task. It integrates task planners (for deciding action sequences)

and robotic motion planners (for finding and certifying collision-free trajectories). The

integration allows the detection of robotic constraints by the motion planner to be used

as feedback for planning a different and potentially more optimized action sequence

(i.e., task plan). Figure 2 highlights the difference of using TAMP vs prior methods.

3

At this moment TAMP is not widely used in architectural robotics and digital fabri-

cation due to its novelty and limited literature in the design field (Sherkat et al. 2023,

Hartmann et al. 2020). Moreover, the Planning Domain Definition Language (PDDL)

(Ghallab et al. 1998) is an action-based language for encoding state transitions, and is

significantly different from the more common, sequentially-executed languages. In an-

other words, the users model their assembly process with PDDL, after which the TAMP

solver will generate the conventional “robotic program” for execution. To make the

modelling process easier and more transparent for the user, this paper will introduce an

incremental programming approach for writing PDDL. Specifically, this paper will

demonstrate:

1. How to encode an architectural assembly process for TAMP using Planning Domain

Definition Language (PDDL) with an incremental programming approach.

2. How to apply PDDLStream, a state-of-the-art TAMP solver, which combines sym-

bolic PDDL solvers with robotic motion planners.

3. The benefits of TAMP over prior planning techniques, with results showing a more

efficient task sequence that can reduce execution times.

2 Case Study

To provide a tangible example, we will use a recently constructed timber pavilion to

introduce the incremental programming approach we developed for writing PDDL and

demonstrate TAMP's benefits. The robotic process used to assemble the pavilion is

called Timber Assembly with Distributed Robotic Tools (DiRT) (Leung et al.). The

assembly process is characterized by having a single industrial robotic arm (integrated

with a large overhead gantry system) manipulating multiple tools capable of clamping

and screwing tasks (see Table 1). One of the unique requirements in this process is that

the distributed tools must be attached to and detached from the structure one by one

before and after the assembly of each beam. The spatial and temporal complexity of the

process is analogous to a chef managing many simultaneously cooking pots on a stove.

With many actions at its disposal and many different ways to sequence the actions, the

robotic process is uniquely suited to explore the possibilities and limitations the benefit

of TAMP.

The design of the demonstration pavilion (see Figure 3a), named CantiBox, consists

of three topologically similar boxes assembled by the DiRT Process separately. Each

box comprises 20 timber elements connected by integral timber joints machined before

assembly. More details of the pavilion’s structural and architectural design can be found

in (Tanadini et al. 2023). This paper will only focus on the planning of the robotic

process.

Table 1. List of robotic tools and their purpose for assembling the case study structure

Tools Type Name Amount Purpose

Robotic

Clamp

CL3 2 Assemble clamped joints. The allowable joint

intersection angle for CL3 is 25-90°, and CL3M

is 90-155°.

CL3M 2

Robotic SL1 3

4

Screwdriver SL1_G200 1 Assemble screwed joints. SL1-G200 can also

act as a timber gripper.

Robotic

Gripper

PG500 1 Grasp timber beams and bring them to the struc-

ture for assembly. Three different gripper

lengths (500mm to 1500mm) are available to

suit different timber lengths.

PG1000 1
PG1500 1

Scaffolding

Bar

- 4 Stabilize structure during construction. (Ignored

in this paper for simplicity)

Fig. 3. Photo and front elevation drawing of the CantiBox Pavilion

The planning of tasks and motions are performed separately for each of the three boxes,

with a planning horizon1 of twenty elements every time. Each of the twenty elements

is labeled during design time to use one of three assembly methods: Ground Connec-

tion, Joint Clamping, and Joint Screwing. The following three paragraphs summarize

the assembly methods (see Figure 4 for related images). Note in advance that the Joint

Clamping method is the focus of later discussions.

The Ground Connection Method is used for the first two timber elements to create

a temporary connection to a ground platform. First, the robotic arm uses a gripper to

position the timber element onto the construction platform. Then, a human operator

fixes the timber to the platform using a fixture. Finally, the robotic gripper releases the

timber, and the robot returns the gripper to storage.

The Joint Clamping Method is used for most of the timber elements (14 per box).

First, the robotic arm attaches robotic clamps to the timber structure, one by one, at the

location of the mating joints. Then, the robotic arm changes to a gripper tool to pick up

a timber element and position it into the clamp jaws. Then, the robotic arm and the

clamps move synchronously to close the joints. Finally, the robotic arm returns the

gripper to storage and detaches the clamps, one by one, from the timber structure. The

number of clamps used depends on the number of mating joints, and the clamp type

(CL3 or CL3M) needs to match the joint’s intersecting angle.

The Joint Screwing Method is used for the interlocking key elements (4 per box).

First, the robotic arm picks up a timber element using a gripper tool. The operator

1 Planning horizon refers to how far ahead the planning looks, it can refer to the number of

actions performed or duration of time. In this work, it refers to the number of discrete timber

elements being assembled.

5

manually attaches screwdrivers to the timber element held by the robot. Then, the ro-

botic arm brings the timber element towards the structure, the screwdriver begins rota-

tion, and the mating joints are pulled together by the screws. Finally, the robotic arm

returns the gripper to storage and detaches the screwdrivers from the timber structure.

Fig. 4. Photos showing a snapshot of the three assembly methods: Ground Connection (left),

Joint Clamping (middle), and Joint Screwing (right)

3 Challenge / Problem

Robotic planning without using TAMP can be generally decomposed into two separate

stages. In the first stage, a list of actions is composed manually or automatically using

computational logic such as flowcharts. In the second stage, the robotic motions be-

tween each target are planned using motion planners.

Using the Joint Clamping Method of our case study as an example, if a flowchart is

used to compose the action template, it would consist of three phases: Attach Clamps,

Clamping, and Detach Clamps (see Figure 5a).2 While this logic may be simple to un-

derstand, the resulting list of actions could be more efficient. Consider the case when

two or more beams are assembled. It would be inefficient to detach the used clamps

one by one and bring them back to storage, only to pick them up from storage again

and attach them to a new location (see Figure 5b). In terms of saving the number of

steps and assembly time, it would be more efficient to detach a clamp from the structure

and bring it to the new location without putting it down (see Figure 5c).

Unfortunately, different beams require different amounts of clamps and different

clamp types. A direct transfer of clamps from the previous location to the next location

is not always possible. Some of the clamps will have to stay on the structure for a longer

period before it is used again. However, with the two-stage planning approach, there is

no way to ensure that the clamps are still accessible by the robot at a later step.3 If we

attempt to create an action plan that will leave the clamps on the structure and retrieve

them later, the motion planner in the second planning step has a high chance of getting

stuck. This problem is analogous to a game of chess where a player makes a series of

moves that result in a checkmate with no way out. The player must either concede de-

feat or re-evaluate their strategy and backtrack to avoid the hopeless situation. In

TAMP, the ability to backtrack is the critical feature that sets it apart from prior work.

2 The Attach Clamps and Detach Clamps actions would be considered sub-templates. They

would be repeated as many times as the number of clamps needed for that specific beam.
3 The addition of more timber elements may block the access of the clamps that are left on the

structure. The clamps can be considered trapped or inaccessible when the motion planner

cannot find any robotic trajectory to reach them.

6

Fig. 5. Diagram showing the nonoptimal result of planning actions with a flowchart

4 Task and Motion Planning (TAMP)

Using a TAMP workflow allows the task planner to automatically choose the sequence

of actions by verifying the feasibility of its robotic trajectory using a motion planner. If

a trajectory cannot be found, the symbolic solver can backtrack and try a different se-

quence of action, for example, by transferring the clamp earlier or by moving the clamp

back to storage after use. The key difference between TAMP versus using flowcharts

is that the actions do not have a predefined sequence (see Figure 2).

4.1 Symbolic Planning

TAMP integrates task planning (symbolic) and motion planning. Symbolic planning

involves using autonomous techniques to solve symbolic planning and scheduling

problems. A planning problem is one in which we have some initial starting state,

which we wish to transform into a desired goal state by applying a set of actions

(Ghallab et al. 1998). In our case study example, the initial state is a list of statements

asserting that (1) the timber elements are located at their storage location, (2) each tool

is located at its storage location, and (3) the robotic arm is not holding any tool or timber

elements. The goal state refers to the same set of statements, except that all the beams

are located in their assembled locations.

7

Predicate - In symbolic planning, states are expressed symbolically, using relation-

ships among objects instead of geometry (such as a transformation matrix). For exam-

ple, the following PDDL statement `(BeamAtStorage b1)` can be used to ex-

press the fact that a timber element called b1 is currently at the storage location. Another

statement, `(BeamAtAssembled b1)` can be used to describe the same element

but located at the assembled location. Each fact-asserting statement is called a predicate

and expresses a Boolean statement. The initial starting state is simply a list of predicates

describing the system at that time. 4

a. (domain.pddl):

(define (domain beam_assembly)

 (:requirements :strips)

 (:predicates (BeamAtStorage ?beam) (BeamAtAssembled ?beam))

 (:action assemble_beam

 :parameters (?beam)

 :precondition (BeamAtStorage ?beam)

 :effect(and (not (BeamAtStorage ?beam)) (BeamAtAssembled

?beam))))

b. (problem.pddl):.

(define (problem minimum_working_example)

 (:domain beam_assembly)

 (:objects b0 b1 b2)

 (:init (BeamAtStorage b0)(BeamAtStorage b1)(BeamAtStorage b2))

 (:goal (and

 (BeamAtAssembled b0)(BeamAtAssembled b1)(BeamAtAssembled b2))))

Fig. 6. A minimal working example of a PDDL (a) domain and (b) problem describing beam

assembly

Action - In symbolic planning, users do not define a fixed order of actions. The user

tells the system what it can do instead of what to do. Actions are composed of two main

parts: Precondition and Effect. The precondition is a Boolean logical formula that al-

lows the planner to decide if an action can be applied based on the current state. For

example, a beam must be at the storage location for the “Assemble Beam” action to

begin. The precondition can also prevent illogical actions, such as assembling an al-

ready-assembled beam. If the planner decides to apply an action, the effect of that action

describes the addition and removal of predicates from the current state.5 For example,

the effect of an “Assemble Beam” action should add the predicate `BeamAtAssem-

bled b1` and remove `BeamAtStorage b1`. Therefore, the result of applying

an action is a new state that is ready to apply another action. The symbolic planner can

keep track of the changing states automatically and be smart about applying which ac-

tions to reach the goal state. However, it is the user's responsibility to ensure that actions

do not create an incoherent state. For example, a beam cannot be located in two places

simultaneously.

4 In planning all unknown values are assumed to be false. That is to say that if we do not know

the value of a predicate, then we assume it to be false. This is known as the “closed world”

assumption. (“The AI Planning & PDDL Wiki” n.d.)
5 When a predicate is removed, it means that the statement is now false.

8

Parameters - PDDL actions are parametrically defined, using variables to express

their preconditions and effects.6 The example in Figure 6a shows a simplified `as-

semble_beam` action from the case study with a parameter `?beam`. The same

parameter is used in the precondition and effect.

4.2 Encoding Assembly Problem with PDDL

In PDDL, a problem is represented using a domain file and a problem file. The do-

main file contains the predicates and actions of the robotic process. Once established,

this file remains reusable for different problems as long as the process logic is un-

changed. In our case study problem, one domain file is shared for the three problem

files corresponding to each timber box. Table 2 shows the complete list of actions used

in the case study, note that each action is very human-understandable.

Table 2. List of Actions used in the case study

Action Name Parameters

1 assemble_beam_by_clamping_method ?beam ?gripper ?grippertype

2 assemble_beam_by_screwing_method ?beam ?gripper ?grippertype

3 assemble_beam_by_ground_connec-

tion

?beam ?gripper ?grippertype

4 pick_gripper_from_storage ?gripper

5 place_gripper_to_storage ?gripper

6 pick_clamp_from_storage ?clamp

7 place_clamp_to_storage ?clamp

8 attach_clamp_to_joint ?clamp ?beam1 ?beam2 ?clamp-

type

9 detach_clamp_from_joint ?clamp ?beam1 ?beam2

Each of the three problem files in our case study contains objects, the initial state, and

the desired goal specific to each timber box. This file contains a long list of predicates

(see associated code repository) to declare the number of beams, the joints between the

beams, the type of gripper required for each beam, and the type of clamp required for

each joint. For integration with a parametric design workflow, this file was generated

computationally via scripting.

4.3 Motion planning with PDDLStream

The second step to achieving TAMP is integrating symbolic planning and motion plan-

ning. When used separately, motion planning ensures target reachability and avoids

unforeseen collisions. However, as discussed in the problem statement, motion planners

alone can get stuck if a trajectory cannot be found. TAMP handles this failure automat-

ically by allowing the symbolic planner to try a different action sequence.

6 The syntax shown in this paper is described in PDDL v1.2 (Ghallab et al. 1998). This paper

uses a popular symbolic planner, FastDownward (Helmert 2006), which supports many com-

mon syntaxes.

9

The TAMP implementation used in this paper is called PDDLStream. It introduces

the concept of stream, an external function that a symbolic planner can call to certify

whether a predicate is true. For robotic assembly processes, the checks include reacha-

bility (certified by motion planners) and collision (certified by collision checkers).

PDDLStream simply acts as a framework that provides a link between the symbolic

planner (such as FastDownward (Helmert 2006)) and the streams (the external func-

tions). The interfaces to the stream samplers are defined in a stream file for PDDL-

Stream (see associated code repository). Figure 7 shows an overview of the TAMP

planning process.

Fig. 7. Overview of the TAMP planning process showing input and output to the solver

Motion Planner (MP) - Separate planners are needed for each action that can get

stuck. They are specific to the actions and are preloaded with the necessary geometry

for motion planning. For example, a stream for the BeamAssembly action should

accept the ?beam parameter as input and check whether a trajectory exists to move

that beam to the final assembled location. Only self-collision (the robotic arm, the grip-

per, and the timber beam) is considered during MP because collisions with other beams

and tools are checked later. If the robot can reach the targets, the generated trajectory

is stored as a predicate to assert that the corresponding action has a trajectory. For ex-

ample, ̀ (BeamAssemblyTraj ?beam ?traj)` can represent the fact that tra-

jectory ?traj is available for beam ?beam.

Collision Checker (CC) - Collisions between the movable beams and tools and the

robot are checked separately using a CC stream.7 Figure 8 shows the AssembleBeam

action (as seen in Figure 6) where MP and CC streams are added to the precondition.

7 The movable objects are checked separately from the motion planning steam because the po-

sition of these objects is managed by the symbolic planner. More details related to this imple-

mentation can be found in (Garrett, Lozano-Pérez, and Kaelbling 2020).

10

The `exists(?otherbeam)` clause checks whether any other assembled beams

are in collision.

:precondition(and

 (BeamAtStorage ?beam)

 (BeamAssemblyTraj ?beam ?traj)

 (not (exists (?otherbeam) (and

 (BeamAtAssembled ?otherbeam)

 (BeamAssemblyInCollision ?traj ?beam ?otherbeam)

)))

Fig. 8. Precondition with motion planning and collision checking streams

5 Experimental Setup

Six experiments with increasing complexity were provided below to demonstrate how

a PDDL problem can be formulated in an incremental manner. The first experiment is

a minimal working example without considering tool and joint requirements while the

final experiment considers all fabrication constraints, and is equivalent to the case study

process. Due to page limitations, the complete PDDL code can be found in the code

repository associated with this paper. 8

E01 beam assembly - Minimal working example with only one action to assemble

beams. No grippers or clamps. No order is enforced. Symbolic planning only.

E02 joint partial order - The joints are defined as an intersection between two

beams. A precondition is added to ensure the joint's first beam is assembled before the

second beam can be assembled (a.k.a. partial ordering). Symbolic planning only.

E03 gripper switch - The gripper requirement is added to the assemble beam action.

Additional actions for the robot to pick up and release grippers are added. Three gripper

types are available. Symbolic planning only. The planning result shows that tool change

actions are inserted wherever necessary. The assembly order differs from the previous

result as the planner tried to reduce the number of tool changes.

E04 assembly stream - The symbolic logic is the same as E03. However, the As-

sembleBeam action is validated with MP and CC streams as described in the TAMP

section above. This is the first TAMP example. The resulting action sequence is longer

than E03. The interpretation is that E03 did not consider MP and CC checks, now that

they are considered, the assembly sequence cannot be as optimized. The MP and CC

checks can also be considered extra constraints for the TAMP solver, which means the

solver has less freedom to choose a shorter action sequence.

E05 clamp transfer - AssembleBeam actions are separated according to the three

assembly methods of a beam. For the assembly action with Joint Clamping, clamps are

required at the mating joints. The correct clamp type must be present on these joints

before the beam can be assembled. Four clamp manipulation actions are added (the last

four rows in Table 2). Symbolic planning only. Note that there are two clamp devices

available for each of the two clamp types. The resulting action sequence shows the

8 https://github.com/yck011522/robarch_pddl

11

clamps transferred between storage and the joints. However, in many cases, the clamps

are transferred directly between the joints.

E06 clamp stream - The actions are similar to E05, but the designer defines the

assembly order (manually, by intuition) to improve stability during construction. In ad-

dition, MP and CC streams validate the AssembleBeam, the AttachClampToJoint, and

the DetachClampFromJoint actions. This experiment is the complete TAMP equivalent

to the case study. The resulting action sequence is longer than that of E05. The rationale

is similar to the one offered for E04.

6 Results and Discussions

Each experiment (E01 to E06) is performed with three problem files corresponding

to the three boxes in the case study. The planner's goal is to minimize the number of

actions to reach the assembled state. The results are broken down in Table 3. “Assemble

Actions” include all three assembly methods (#1 - #3 in Table 2). “Gripper Actions”

include picking and placing grippers (#4, #5 in Table 2). The main highlight is the

“Clamp Actions”, which include the four actions that pick and place the clamps (#6 -

#9 in Table 2). Although the topology of the three boxes is the same, their geometry is

different. Therefore, their geometrical constraints (such as robot reachability) that af-

fect the choice of tasks are also different. This is reflected in the result where the num-

ber of planned tasks differs for each of the three boxes.

Table 3. Number of planned actions in the six experiments with three problem sets. The results

of the three boxes (left, mid, right) are separated by a + symbol.

Planning

Experiment

Assemble

Actions (Count)

Gripper

Actions (Count)

Clamp

Actions (Count)

Planning

Time (s)

E01 20 + 20 + 20 - - <1 + <1 + <1

E02 20 + 20 + 20 - - <1 + <1 + <1

E03 20 + 20 + 20 4 + 8 + 4 - <1 + <1 + <1

E04 (TAMP) 20 + 20 + 20 4 + 8 + 4 - 113 + 139 + 145

E05 20 + 20 + 20 28 + 28 + 26 56 + 56 + 56 2 + 3 + 3

E06 (TAMP) 20 + 20 + 20 34 + 38 + 32 56 + 56 + 56 54 + 32 + 52

Flowchart 20 + 20 + 20 40 + 40 + 40 96 + 96 + 96 <1 + <1 + <1

The optimization benefit of TAMP can be seen in Table 4, which compares the result

of experiment E06 and what would have been required if a flowchart method was used.

The execution time of each action was measured during the actual robotic construction.

The estimated times listed in the table are calculated using the average value for each

action type (calculated separately for each of the three box structures). The significantly

reduced number of clamp transfer actions (see Figure 9) resulted in a total time reduc-

tion of 16%. Note that a similarly optimized action sequences are almost impossible for

a human to create manually because it would be highly prone to error.

On the other hand, we found that the TAMP solver planning time is highly sensitive

to the number of beams to be assembled, especially for our process that has a high

branching factor (many possible actions at each step). The partial ordering constraint

12

introduced in E02 helps reduce the branching factor. However, in E06 we have to spec-

ify the full assembly order to reduce the branching factor for the search to be completed

in reasonable time. One explanation is to imagine the number of possible moments for

a clamp to be attached to the structure before it is needed by a beam, and after the clamp

is used, it can also be detached or relocated at any time after that. Future research can

study how to reduce planning time by smarter problem formulation.

Table 4. Time comparison of experiment E06 (TAMP with a fixed order) and the flowchart

planning method

 Execution Time for Actions (min)

Planning Ex-

periment

Assemble Actions Gripper Actions Clamp Actions Total

E06 (TAMP) 179+194+185 93+114+107 194+189+191 1446 (-16.3%)

Flowchart 179+194+185 100+111+119 284+252+303 1729

Fig. 9. Image of a beam being assembled by screwdrivers. Note that some clamps remained on

the structure from the previous assembly.

7 Conclusion

The integrated Task and Motion Planning (TAMP) workflow using PDDLStream over-

comes the limitations of the previous two-stage planning methods such as flowcharts.

It allows the planner to explore different task sequences while considering the motion

planning constraints. The automatic generation of action plans resulted in a significant

execution time reduction without manual programming efforts.

Using our case study, we have introduced an incremental programming approach to

formulate complex assembly problems with PDDL. While the incremental addition of

13

actions and constraints makes programming easier, it also creates modular PDDL code

snippets that can be reused for different assembly problems. For example, future work

can consider adding a stream for the planner to generate and validate grasp poses (i.e.,

where the workpiece is held), or checking the partially assembled structure to avoid

instability.

8 Acknowledgment

The authors would like to acknowledge the contribution of Caitlin Mueller for her

insightful discussions and scholarship support for Y. Huang; the design and engineering

team behind the CantiBox Pavilion; and the Robotic Fabrication Laboratory team (ETH

Zurich). This research was supported by the Swiss National Science Foundation

(NCCR Digital Fabrication agreement number 51NF40-141853), and Y. Huang was

supported by an ETH Postdoctoral Fellowship.

References

1. Garrett, Caelan Reed, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie

Pack Kaelbling, and Tomás Lozano-Pérez. 2021. “Integrated Task and Motion Planning.”

Annual Review of Control, Robotics, and Autonomous Systems 4 (1): 265–93.

https://doi.org/10.1146/annurev-control-091420-084139.

2. Garrett, Caelan Reed, Tomás Lozano-Pérez, and Leslie P. Kaelbling. 2020. “PDDLStream:

Integrating Symbolic Planners and Blackbox Samplers.” In International Conference on Au-

tomated Planning and Scheduling (ICAPS). https://arxiv.org/abs/1802.08705.

3. Ghallab, Malik, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela

Veloso, Daniel Weld, and David Wilkins. 1998. “PDDL The Planning Domain Definition

Language.” https://planning.wiki/_citedpapers/pddl1998.pdf.

4. Hartmann, Valentin N., Andreas Orthey, Danny Driess, Ozgur S. Oguz and Marc Toussaint.

2023. “Long-Horizon Multi-Robot Rearrangement Planning for Construction Assembly”

IEEE Trans. Robot., vol. 39, no. 1, pp. 239–252. doi: 10.1109/TRO.2022.3198020.

5. Hartmann, Valentin N., Ozgur S. Oguz, Danny Driess, Marc Toussaint, Achim Menges.

2020. “Robust task and motion planning for long-horizon architectural construction plan-

ning” IEEE/RSJ 2020 International conference on intelligent robots and systems (IROS),

pp. 6886–6893. doi: 10.1109/IROS45743.2020.9341502.

6. Helmert, Malte. 2006. “The Fast Downward Planning System.” Journal of Artificial Intelli-

gence Research (JAIR) 26: 191–246.

7. Huang, Yijiang, Victor Pok Yin Leung, Caelan Garrett, Fabio Gramazio, Matthias Kohler,

and Caitlin Mueller. 2021. “The New Analog: A Protocol for Linking Design and Construc-

tion Intent with Algorithmic Planning for Robotic Assembly of Complex Structures.” In

Symposium on Computational Fabrication. SCF ’21. Association for Computing Machin-

ery. https://doi.org/10.1145/3485114.3485122.

8. Ögren, Petter, and Michele Colledanchise. 2018. Behavior Trees in Robotics and AI: An

Introduction. Boca Raton: CRC Press. https://doi.org/10.1201/9780429489105.

9. Sherkat, Shermin, Lior Skoury, Andreas Wortmann and Thomas Wortmann. 2023. “Artifi-

cial Intelligence Automated Task Planning for Fabrication” Advances in Architectural Ge-

ometry 2023, De Gruyter, pp. 249–260. doi: 10.1515/9783111162683-019.

https://doi.org/10.1201/9780429489105

14

10. Tanadini, Davide, Giulia Boller, Pok Yin Victor Leung, and Pierluigi D’Acunto. 2023.

“Plastic Design of Bespoke Interlocking Timber-to-Timber Connections for Robotic Assem-

bly.” In World Conference on Timber Engineering (WCTE 2023), 4399–4408. Oslo, Nor-

way: World Conference on Timber Engineering (WCTE 2023).

https://doi.org/10.52202/069179-0573.

11. Wagner, Hans Jakob, Martin Alvarez, Abel Groenewolt and Achim Menges. 2020. “To-

wards digital automation flexibility in large-scale timber construction: integrative robotic

prefabrication and co-design of the BUGA Wood Pavilion,” Constr Robot, vol. 4, no. 3, pp.

187–204, doi: 10.1007/s41693-020-00038-5

12. “The AI Planning & PDDL Wiki.” n.d. Planning.Wiki - The AI Planning & PDDL Wiki.

Accessed October 5, 2023. https://planning.wiki/.

https://doi.org/10.52202/069179-0573

