Design Validation and Conflict Resolution for
Robotic Fabrication: A Multi-Stage Framework
for Complex and Non-Repetitive Processes

Pok Yin Victor Leung*![0000—-0003—-1536-8636] 41 Yijiang
Huang?*2[0000—0003-1820—2535)]

* Both authors have contributed equally to this work.

Abstract. The use of robotics in construction offers transformative pos-
sibilities but also unique computational challenges, especially for bespoke
and non-repetitive assembly processes. Fabrication constraints such as
robotic reachability, material grasp stability, collision, and structural
stability have to be validated before construction begins. However, vali-
dating all constraints is computationally expensive and the current ap-
proaches are linear black-boxes that simply run until they detect a con-
flict. When attempting to resolve the conflict, the current approach pro-
vides no indication of which variables to adjust and how to adjust them.
This paper introduces a multi-stage constraint-validation and conflict-
resolution approach as part of a computer-aided design process. The
approach is developed, and its feasibility is validated by the robotic con-
struction of a complex timber pavilion with numerous interdependent
design variables. These variables include the shapes and position of in-
dividual timber elements, choices of structural joints, and robotic tools.
Our design approach organizes these variables and their associated con-
straints into three conflict-resolution stages: (1) Assembly Design Stage -
where real-time feedback supports creative exploration, (2) Process De-
sign Stage - where fabrication decisions are made, and (3) Motion Plan-
ning Stage - where collision-free trajectories are computed. We introduce
the concept of proxy checks to provide faster feedback and more inter-
pretable results in each stage, enhancing the iterative design process. Our
approach marks a step toward a more intelligent, computer-aided design
system that can provide suggestions to resolve conflicts, advancing the
field of computational design for robotic construction.

Keywords: Design Validation - Robotic Fabrication - Spatial Assembly
- Design to Production - Fabricatability - Distributed Robotic Tools

1 Introduction

Design validation has a long history in computer-aided design and manufactur-
ing, which uses computer simulation to predict and quantify the feasibility of a
given design. In robotic fabrication, the main concerns are (1) whether a given
robot system can perform all the assembly motions without collision, and (2) sta-
bility during construction, among many other constraints. The current method

2 Leung and Huang

to perform such assessments (design validation) is to plan the robotic tasks and
motions (trajectories) with a detailed simulation. Depending on the complexity
of the process (e.g. total number of motions, density of collision environment),
Task and Motion Planning (TAMP) can be time-consuming, resulting in a slow
design-evaluation cycle.

This paper focuses on the design method for a robotically assembled timber
pavilion called HyperHut using an autonomous robotic process with Distributed
Robotic Tools (DiRT) previously introduced in [I4]. In this robotic process, 4
robotic screwdrivers (of 2 different types) and 3 pneumatic parallel grippers (of
different lengths) were used in a non-repetitive sequence. We initially employed
the flowchart method in [I2] to plan the action sequence, which resulted in a
long list of more than 1000 individual movements. However, we encountered dif-
ficulty when planning the trajectories according to this task sequence EL where
constraint violation require labourously adjusting design parameters (conflict
resolution) and re-planning from the beginning. We found that a substantial
amount of time was spent on adjusting the design because of the large number
of computational steps between input (design decisions) and the output (gener-
ated motions). This makes it difficult for the designer to understand the input
sensitivity (which parameter to adjust) and its gradient (how to adjust it) to
resolve conflict. Therefore, each adjustment is not far from random and all the
tasks and motions have to be recomputed for validation. Furthermore, the pro-
cess involved motions in tight spaces, which further lengthened motion planning
times.

The goal of this paper is to improve the computational design workflow,
specifically to reduce the time (manual and computational) needed for design
validation and to reduce the number of iterations needed for conflict resolution.
Our contribution can be summerized with following approaches:

1. Grouping design parameters and constraints into three design stages, prior-
itizing faster computation to be performed at early stage.

2. Using proxy constraints (simplified rules) that are less accurate but faster
to compute at early stage, to cull infeasible design decisions.

3. Calculating inverse kinematics (IK) as a quick reachability check.

4. Grouping robotic motions as Linear Motion Group (LMG) and Free Motion
Group (FMG) and planning them separately in stage two and three.

By employing all these strategies, we found that it is possible to iterate the
initial design to a buildable state at a much faster pace than by going through the
full validation process every single time. The parameters and constraints shown
in our case study are common to many robotic assembly processes. Thus, the
staged adjustment approach, the grouping strategy, and the proxy constraints
are expected to be applicable to a wide range of processes.

! Previous approach in [12] treats task and motion planning as two separate stages. In
this paper, we treat task planning and motion planning as part of the design process,
their result being the action sequence and trajectories are decisions that is part of
the design.

Design Validation and Conflict Resolution for Robotic Fabrication 3

1.1 Related work

Industrial robots have been used in several architectural projects to create be-
spoke spatial assemblies [BI7J9IT9]. Many of these early works adopt a trial-and-
error approach for designing the robotic actions and motions. Starting with an
assembly design, this planning process involves manually assigning and adjusting
(1) an action pattern (e.g. pick-transfer-place-transit pattern), (2) an assembly
sequence,(3) robot targets and (4) joint configurations at keyframes. This process
can be assisted by software packages that perform point-wise kinematic checks
[IUT6l20] and plan motion trajectory from configuration to configuration [GUI8].
However, for complex assemblies, a poorly chosen action pattern or assembly
sequence might lead to a “stuck” situation where the robot cannot assemble a
workpiece because other pieces block it. When such a dead-end happens, a trial-
and-error approach is typically used to find out which of the many parameters
to adjust and how to adjust it. Furthermore, there is often a desire to adjust
parameters that do not affect the appearance of the pre-conceived architectural
design, which we refer to as process parameters (such as the choice of gripper or
grasp poses). This conflict resolution process is crucial for the design of complex
robotic processes, such as our case study, where motion planning dead-ends ap-
pear frequently. Yet, the literature on this topic is sparse. This paper aims to fill
this gap by presenting a workflow for designing these structures.

Recent work on applying automated planning for robotic fabrication aims to
alleviate designer’s burden on resolving part of the robotic process parameters
automatically, mostly assuming the architectural design is fixed. For processes
with simple robot action patterns, such as pick-and-place assembly, specialized
planning algorithms have been developed to plan the assembly sequence and
motions for a single robot [II] and asynchronous motions of multiple assembly
robots [3I8]. For generic robot fabrication processes, prior work has demonstrated
PDDL-based task planning [I7], flowchart-based task planning with automated
motion planning [12], and integrated task and motion planning [15]. However,
these automated planners can only provide a solution when the assembly task
is feasible, but we often do not know that a priori and thus need an iterative
process to update the inputs to the planner, i.e., architectural and process design
variables, until we find a feasible plan. When a plan cannot be found, most
planners today can only return a rather uninformative, cold “no plan is found”
or “planning time limit reached” message after a lengthy computation. Designers
are left to themselves to decompose or simplify the planning problem to get
more granular information and to diagnose the problem. Our staged approach
presents a systematic and computationally efficient framework to achieve this.

When it is relatively easy and quick to find a feasible robot plan, the plan-
ner can be used as a black-box performance evaluation subroutine in a larger
optimization loop in a parameterized design space. Previous works derive score
functions from measuring the structural behaviour during construction [I0] or
approximated assembly time of mobile robots [22]. However, for complex robotic
processes, high-fidelity planning is needed to validate the design, which is too
computationally expensive to be used in an optimization loop. Furthermore,

4 Leung and Huang

Fig. 1. Image of the HyparHut Pavilion after successful assembly under the robotic
platform. The robotic arm and gantry used for construction can be seen.

since the planner is likely to fail, as noted in the last paragraph, this failure
does not provide any useful signal, e.g., gradient, on how to nudge the design
towards the feasible subspace. Although this work focuses on finding a constraint-
satisfying design rather than optimization, our strategies enable the evaluation
process to fail faster and to return more detailed conflict information, which has
the potential to be integrated into an automated design optimization mechanism.

2 Methodology

2.1 Case Study

This paper is based on the case study project called HyperHut, named after its
hyperbolic roof geometry. It consists of 57 timber elements that are assembled
by a single 6 DOF robotic arm, invertedly mounted under a large 3 DOF gantry
robot . The combined setup has a working envelope that is larger than the
whole pavilion, allowing the pavilion to be assembled in one continuous process
as a simulation of an on-site assembly scenario. The robotic arm works collabo-
ratively with 3 parallel grippers and 4 distributed robotic screwdrivers
. The role of the screwdrivers is to assemble the tight-fitting lap joints
by pulling them together with a screw mechanism. In order to avoid jamming
when closing multiple joints, multiple screwdrivers are operated synchronously
via wireless communication with the robotic arm to complete the assembly.

Design Validation and Conflict Resolution for Robotic Fabrication 5

Fig. 2. Images of the robotic tools in their automated storage station (a) three robotic
grippers, and (b) four robotic screwdrivers.

Fig. 3. Image showing the manual actions (a) fixing ground elements to the platform,
(b) loading timber element onto the gripper, and (c) attaching screwdriver onto the
timber element.

2.2 Task Planning with Flowchart

The assembly process follows a non-repetitive cycle by assembling one element
at a time. Typically, the workflow includes (1) pick-up and attaching a gripper,
(2) loading timber elements onto the gripper, (3) attaching screwdrivers to the
timber element, (4) transferring the timber element to the assembly location,
(5) synchronous joint closure, (6) retracting the gripper from the timber, (7)
detaching the gripper and leave it at the tool-storage, (8) docking with a screw-
driver on the structure, (9) retracting that screwdriver, and (10) detaching that
screwdriver at the tool-storage. All actions are automated in the experiment and
demo, with the exception of (2) and (3), which are performed by the operator
(Figs. [3b] and [3d).

An alternative assembly routine is used for elements connected to the ground
(3 out of 57 elements), where the operator fixes the timber elements to a tempo-
rary platform . A third alternative routine was used, where a screwdriver
was used (instead of a gripper) to hold and transfer the timber element .
This mode is selected by the process designer on a case-by-case basis (34 out
of 57 elements) to speed up the assembly process because it skips the steps to
change to the parallel gripper. This mode also reduces the weight carried by the
robot when multiple screwdrivers are attached to the timber element. However,
this mode is only applicable when one of the joints is close to the middle of the
timber element or the timber element is short, as shown in [Fig. 4b)

6 Leung and Huang

Fig. 4. Image showing the difference between using (a) a parallel gripper and (b) a
screwdriver to hold the timber element during transfer and assembly.

The distribution of (1) how many joints are assembled for each timber el-
ement (hence how many screwdrivers are used), and (2) their gripper choices
are shown in Table[T] This matrix of possibilities explains the origin of the non-
repetitive action sequence. Note that (1) is determined by the arrangement of
timber elements in the structure (architectural design), and (2) is chosen to fulfil
engineering constraints (process design).

Table 1. Number of times each tool was used as a gripper for transferring a timber
element, the occurrences are counted separately for elements with different numbers of
simultaneously assembled joints. The total count adds up to 57 elements.

Gripper Choice Ground Element|1 Joint|2 Joints|3 Joints|4 Joints
Parallel Gripper (500 mm) |0 2 1 0 0
Parallel Gripper (1000 mm)|3 2 8 0 0
Parallel Gripper (1500 mm)|0 0 5 2 0
Screwdriver 0 1 0 0 0
Screwdriver with long arm |0 1 16 11 5

We implemented the flowchart method introduced in [I2] to create the non-
repetitive action sequence (see by analyzing the property of each timber
element as shown in Table [I} The evaluation result, based on the final pavilion
design with 57 elements, resulted in 811 high-level actions. If we expand these
actions into their primitive movements shows part of the expansion pro-
cess), there are 1087 Linear Movements (LM) (linear in Cartesian space) and
410 Free Movements (FM) (unconstrained joint-space movement).

2.3 Design Model Initialization

In this paper, 'design decisions’ broadly encompass all aspects of the design in-
cluding architectural geometry, spatial arrangement, structural joints, materials,
and robotic assembly parameters." For example, one of the design decision is the

Design Validation and Conflict Resolution for Robotic Fabrication

Q Flow Control (Start / End)

<> Flow Control (Conditional / Iterators)

[: High-Level Action

Manual Movement
(No planning needed)
Tool Movement

(No planning needed)

D Free Robotic Movement D
D Linear Robotic Movement D

[:] Synchronized Robot and Screwdriver Movement (Linear)

Primitive Movements and Grouping

Flowchart for planning High-Level Actions
Grouping

For eve N :

timber eler;{ant _{- > TransferTimberElement :
in assembly Robotic Arm transfer timber g
sequence ’/ (d) to the assembly approach point [7)

,' - » SynchronousJointClosure

/ Robot, Timber and Scrdrivrs E
! (© approach starting point @

l—grippe

age | (x)[

Operator Inspection
(Screw Tip in Position)

iverF

[PickGripperF

Robot and All Scrdrivrs

LoadTimberElement

]

move synchronously to close joint

(c) [

For every

remaining

next—-[AttachScrewdriver
|

to attach

TransferTimberElement

Is Ground
Element?

ol

] ' : Scrdrivrs tighten joints till
, ! x) specific torque
} - : ,» RetractScrewdriver
N ([Scrdrivrs lock release
D x

Robot and Attached Scrdrivr
move synchronously to back away

Robot and Attached Scrdrivr

[FixGroudElementManually] [Syncl

hronousJointClosure :
} linear retract further away

(©)

-screwdri

l——gripper

» DetachScrewdriverToStorage

i Robotic Arm transfer Scrdrivr
(d) to the tool storage approach point

Robot move Attached Scrdrivr
linearly into storage pad

on1 | o4

ver-

/ ! (c) [

[

RetractGripper

[

RetractScrewdriver

Detach Scrdrivr by

_TE lTT“ I

},' I,”

releasing ToolChanger

)

)

DetachGripperToStorage

[

[DetachScrewdriverToStorage]»"

Robot retract linearly

ol -

from detached Scrdriver

Do

ckingWithScrewdriver --
} - » DockingWithScrewdriver

v

For every
remaining

next

‘—end

Robotic Arm transit to docking

RetractScrewdriver
approach point for Scrdrivr

(d)[

screwdrivers.

to detach

ewdriver

g

J
)

Fig. 5. Flowchart for planning the

high-level action sequence showing (a) iterators and

(b) conditional statements. The primitive actions are shown for five selected actions,
revealing their constituent (c¢) LM, (d) FM, and (x) other movements that do not
require planning. LM and FM are grouped for motion planning, which will be explained

in Section

movement of each timber element throughout the robotic assembly process. Due
to the specificity of timber construction and the lack of existing precedence, we
created a custom digital model as a complete representation of the design. The
model includes parameters for architectural design decisions (such as the ge-
ometry and location of each timber element) and process design decisions (such

8 Leung and Huang

as assembly sequence, gripper choice and grasp pose for each element). These
parameters are considered top-level decisions because the designers can modify
them. In addition, the model also contains derived decisions (such as connectiv-
ity between elements) and sampler-based decisions (such as robot configurations
computed from Inverse Kinematics). Both of these two types are computed from
a function that takes input from other variables, with the difference that the
derivation function is deterministic and the sampler is stochastic. A constraint
function also takes input from other variables, but instead of generating a new
value, it provides a binary certification of whether a constraint is satisfied. The
detailed categorization of parameters and functions is shown in

The designer initializes the model by converting an existing solid model
(BReps created in Rhino3D) to a custom data structure that represents timber
elements as rectangular boxes (width, depth and length) and their pose in space
(global transformation). After the initial conversion, other top-level parameters
are also initialized by filling them out with a default value. In some cases, the
default value is generated automatically by a sampler function. For example, a
gripper with a suitable size is selected based on the length of the timber element.
While the automatic functions are designed to compute desirable default values,
there is no guarantee of satisfying other constraints in the overall process. We
rely on the designer to adjust these initial values in the conflict resolution step
that will be described in Section 2.5

One special modelling technique worth mentioning is related to how the grasp
pose is selected. The grasp pose is a 3D frame (with 6 DOF) representing the
affine transformation of the gripper relative to the timber element’s origin. In
order to ensure that the gripper pads have full contact with the sides of the
timber element, a geometrically associative model was introduced as the sampler
for the grasp pose . It also introduces two new top-level parameters,
‘face’ and ‘position’. Using this model, the designer can make straightforward
adjustments to the face and position values while being certain that the gripper
pads will satisfy the contact constraint. With this modelling, the grasp pose is
no longer a top-level decision but a derived one. We used a simple rule to pick
the top-facing face and a central position for their initial values, which minimizes
the torque on the robot’s wrist.

The relationships between decisions, sampler, derivation and constraint func-
tions are represented as a graph in The direction of data flow is repre-
sented using directed edges in the graph, which reveals the overall derivation
order. The directional edges can be used (1) to trace potential upstream causes
when a constraint is violated and (2) to identify downstream effects when an up-
stream decision is modified. For example, the latter helps identify which derived
decisions have to be recomputed and which constraints have to be revalidated.

2.4 Conflict Detection

After parameters are initialized, the conflict resolution process begins. The goal
is to check and resolve conflicts by modifying their upstream decisions. Conflicts
can manifest in two different ways: (1) computed by the constraint-checking

Design Validation and Conflict Resolution for Robotic Fabrication 9

Grasp Pose

Gripper Pad

Gripper Pad

Face = 4

j - Face =3

Workpiece (Timber Element) Pose

Fig. 6. The associative model within the grasp pose sampler. The input variables ‘face’
and ‘position’ are shown, the output of the sampler is the grasp pose relative to the
workpiece pose.

functions, as mentioned before, and (2) by the failure of a sampling function to
generate a value. Sampling failure is possible when the function cannot make a
meaningful output when given the input values, for example:

— Gripper choice sampler may fail to find a suitable gripper when a timber
element is too long or too short.

— Inverse kinematic sampler may fail when the target is out of reach for the
robot.

— Motion Planner (MP) may fail to find a motion trajectory when the target
is blocked by an obstacle.

Maximum Planning / Searching Time When validating with MP, the plan-
ning algorithm has to be given a reasonable planning time to conduct the search.
Too short, and it may not find a solution (even though the solution may exist);
Too long, and the wait is too long for the designer to consider that trajectory
impossible and to start making adjustments. We empirically found a suitable
value for our process, using 2 seconds for LM and 600 seconds for FM. Using
an automatic backtracking and retrying method described in [I2], we can plan
all the actions (approximately 1000 LM and 400 FM) while maintaining config-
uration continuity. If successful, the whole process takes 6 to 10 hours to plan.
Unfortunately, during the conflict resolution stage, the planner will continue to
fail. In the beginning, the planning will fail relatively fast as the first problem
is encountered. However, as the designer fixes the problem and tries again, the
problematic moment will occur later, meaning that the planner will run for a

10 Leung and Huang

Assembly Design Stage

Robot Trajectories

Partial Order Assembly Sequence Assembly |:| Top Level Decision C] Constraint
H Partial Order Sequence 1
E 1 |:| Sampler Based Decision D Derivation
i : Derived Decision Sampler
i | Structural Partial : - D
H Stability Assembly ! e
T R i | Planning Flowchart
i \g::(rﬁ':;; : . Neighbor Detection Flowchart Evaluation :
) Gripper :
i < Gripper Choice Choice
H v Sampler '
! Workpiece Pose . Face
(Assembly Targets) H Grasp From H
: Ve — Parametrization H
! Position !
: Grasp Pose :
: Target
H Transformation H
Workpiece Pose
E (Pickup Targets) o Gripper Pose
H P (Pickup Targets) H
: Initial Robot :
H Configuration H
Cogg;:ate WERIRCH
Process DesignStage N Frame Transfomation] :
Gripper Model —)[Compose] [Action Effect]/
: Robot Model Py H
i | Inverse Kinematics | :
o s T 1 ”|(Conditional Sampler)| :
Motion Planning Stage H
e I 2N) 2N Jr :
R) " . Actions with :
> Motion Planner (Conditional Sampler) < Robot,Configurations|

Fig. 7. Decision network represented as a graph, showing data flow between sampler,
derivation and constraint functions.

long time before revealing the next problem. For the designer trying to resolve
conflicts, it is very time-consuming to change one parameter each time to observe
its effect.

Proxy Collision Check Through practice, we have found that it is better to
introduce sanity checks at an earlier stage before MP. One important discovery is
the introduction of the collision check (CC) for all the intermediate states at the
start and end of each motion. Contrary to the common approach to performing

Design Validation and Conflict Resolution for Robotic Fabrication 11

Fig. 8. Two examples of the disembodied collision check at different steps: (a) tim-
ber element with two screwdrivers approaching the assembly location, and (b) another
timber element with three screwdrivers after joint closure. A sphere is used as a geo-
metrical proxy for the robot wrist.

CC within the MP workflow, we performed CC before MP by excluding the
robot body, which is still in an unknown configuration. We included all the other
elements that have deterministic poses (the timber element, gripper, attached
screwdrivers and a sphere as a proxy of the robot wrist) to perform CC with
the stationary obstacles in the scene . We called this sanity check a
‘disembodied collision check’ before the tool is detached from the robot. We also
call this a ‘proxy check’ because it is a proxy of the actual MP as validation.
Although this proxy check can only identify a subset of cases where MP would
be infeasible, there are many benefits of this check:

— It is order-of-magnitude faster to compute than MP.

— It can be computed in deterministic time.

— It can be performed at an earlier stage, even before IK and other derived
decisions are computed.

In practice, it takes less than one second to compute CC for each motion when
computed in Rhino and less than 0.1 seconds when computed in PyBullet [4].
This means that the designer can receive near real-time feedback when inspecting
the assembly process in a step-by-step manner in Rhino (with interactive 3D
visualization) or receive a batch-checking report for all actions within a few
minutes using PyBullet (without visualization).

2.5 Conflict Resolution

When a conflict is detected, the designer must decide which of its upstream
decisions can be modified to resolve the situation. As mentioned before, the
decision network can be used to identify top-level decisions or samplers that can
be modified. However, since the MP is often the failing sampler, the number
of upstream candidates is almost everything. This presents a challenge for the
designer to decide which parameter to adjust and how to adjust it.

12 Leung and Huang

Decision Grouping by Design Stage From practice, we found that it is
useful to group the design decisions, constraints and samplers into three design
stages: Assembly Design Stage, Process Design Stage and Motion Planning Stage
(grouped by dotted lines in . The designer follows a general guideline to
resolve as much conflict as possible within one stage before progressing to the
next stage. Backtracking to an earlier stage is done only when necessary because
adjusting an earlier parameter often leads to new conflicts. This multi-stage
iterative workflow is summarised in

Assembly Design Stage Process Design Stage Motion Planning Stage
Initialize Conflict : : Initialize Conflict IK I ' Robot Config '
Variables Detection k ' Variables Detection ok Check | ! k (IK) <_| H
fail § : ' 4 fail {, fail : ok retry |
Decide Use Decide retty _| LM Group .
which . H Previous which ' exhausted Planning <_|
Parameter ! : Values Parameter B H
N | H . . . ok ¢ retry !
to adjust H H if possible to adjust : _, '
¢ ! - ¢ rety _ | FM Group
' : exhauslted Planning
Adjust : Adjust :

Parameter ¢ Backtrack Parameter («——Backirack

Fig. 9. Conflict resolution workflow with stage separation

Assembly Design Stage The first stage is mostly concerned with architectural
and structural design decisions, such as the arrangement of timber elements.
However, we also included the assembly sequence decision in this stage because it
is often part of the consideration when designing a timber structure with integral
timber joints. We perform (1) a “stability check” for the complete structure and
all the partially assembled states, and (2) a disembodied assembly CC (a proxy
check), which only includes the timber element’s geometry in its final movement
when the joints are closed. These checks are very fast to compute, allowing the
designer to receive instant feedback while adjusting their design.

Process Design Validation The second stage is concerned with how the struc-
ture is constructed, such as the position of the structure relative to the robot,
tool choice and grasp poses. We implemented the following checks within Rhino
for an interactive design session, note that all CC involved in this stage do not
include the robot:

— Grasp Stability Check

— Gripper Grasp CC for all motions while holding the timber element

— Screwdriver CC when it is attached to the timber element that is being
assembled

— Screwdriver CC when the robot retrieves the screwdriver

Design Validation and Conflict Resolution for Robotic Fabrication 13

— Tool storage CC for tool pickup and return motions

Finally, we also implemented an IK check at the end of this stage to check that
all motion targets have IK solutions (confirming the targets to be collision-free
and reachable). The collision detection was implemented using PyBullet for its
better performance, allowing the designer to check IK for all motions (~1400)
within a few minutes. This provides the final confirmation that the process is
ready for the next stage.

Motion Planning Validation The final validation of the robotic process is to
plan the robotic motions (trajectories). This is the complete validation because
the MP respects the following constraints, making sure (1) the planned trajec-
tory stays within the the robot’s kinematic limits, (2) all moving objects are free
from collision with stationary objects, and (3) the discretized trajectory satisfies
joint speed and acceleration limits. Using the non-linear planning sequence with
automatic backtracking and retrying method introduced in [12], the whole pro-
cess would take 6 to 10 hours to plan, hence we would often leave the planner
to run overnight. Unfortunately, if one of the motions fails to plan, the rest of
the motions cannot continue. This means that the overnight run can only help
identify one problematic motion per nightly run.

Grouped Motion Planning In order to overcome this problem, we have improved
upon the non-linear planning sequence by splitting the entire motion planning
process into two parts. We employed a grouping strategy to group consecu-
tive linear motions and free motions into what we called Linear Motion Groups
(LMGs) and Free Motion Groups (FMGs) (see for a grouping example).
We first plan the LMGs, make adjustments if necessary, and finally plan the
FMGs. In our process, the LMGs are short motion segments representing ap-
proach and retract motions, each containing 2 to 6 linear motions, while the
FMGs are much longer motions that move the end effector from one location to
another.

Because there are only two types of groups, LMGs and FMGs always happen
alternatively. This means that each of the LMGs is separated by unconstrained
free motion that can bridge large gaps if necessary. This allows us to plan each
of the LMGs separately without worrying about continuity or dependency on
each other. Within each LMG, the same non-linear ordering logic was used to
overcome the problem caused by taught configurations [12].

The main benefit of this method is that even if one of the LMGs fails, the
other groups can still be planned, allowing a single batch run to reveal all the
problematic motions. Furthermore, because each group is rather small, the back-
tracking depth is limited, and therefore the total time to give up can be rather
short. In our case study, we implemented Randomized Gradient Descent [2I] to
plan each LM and planning all the LMGs for the whole assembly process would
only take ten to twenty minutes, which is short enough for the designer to make
some parameter adjustments and wait to see its effect.

14 Leung and Huang

Fig. 10. Example of a successfully planned (a) Linear Motion and (b) Free Motion.

Once the LMGs are completely planned, the FMGs can be planned. The
beginning and end configuration of the FMG are copied from the neighbouring
LMGs to ensure continuity of joint configurations, and off-the-shelf motion plan-
ners, such as RRT-Connect [I3], can be used to plan each FM. Note that FMGs
can also be planned without dependency across the groups, meaning that paral-
lel computing is possible. In our case study, all the FMGs can be planned when
given enough time. However, for future work, if an FMG fails to plan due to its
neighbouring LMGs are badly chosen, an automatic backtracking method could
be implemented to re-plan its neighbouring LMGs and second-degree FMGs
neighbours.

3 Results

Using the strategies described in the previous section, we successfully planned
our case study structure by adjusting the initial design parameters until all con-
straints were fulfilled. The human designer provides important intuition during
conflict resolution for selecting which parameters to adjust and how to adjust
them. Thanks to the separation of design stages, the number of parameters to
choose from is kept to a manageable number. Furthermore, the proxy checks
in each stage make the evaluation time fast enough for an efficient adjustment
process. The use of proxy collision checks at each design stage enables the final
push for all the computationally difficult MP tasks to be accomplished auto-
matically towards the end of the process. Table [2| provides an estimation of the
number of times an adjustment-validation cycle was performed in each design
stage. Without the strategies presented in this paper, each parameter adjust-
ment would have to go through the entire planning process for validation. For
hundreds of iterations, if each validation would take hours to compute, the whole
design process would take an intractable amount of time.

4 Conclusion and Future Work

This paper contributes an iterative computational approach to validate and re-
solve conflicts for a design so that it can be robotically fabricated. We introduced

Design Validation and Conflict Resolution for Robotic Fabrication 15

Table 2. Estimated number of adjustment-validation iterations in each design stages.

Validation Time

Design Stage (per iteration) Iterations Performed
Assembly Design Seconds for each element|Few Hundred
Process Design (No IK) Seconds for each element|Few Hundred
Process Design .

(IK + CC in PyBullet Planner Few Minutes <50

outside Rhino) for the whole process

. . Tens of Minutes
Motion Planning (LMGs) for the whole process <20

. . Five to ten hours
Motion Planning (FMGs) for the whole process <10

a hierarchical framework that groups decision parameters and feasibility checks
into three stages and used fail-fast principles to enable faster and more local-
ized design adjustment. This approach breaks down existing lengthy, black-box-
style validation process into smaller pieces that are more interpretable and have
a faster turnaround time. Thus, speeding up the overall design-to-production
workflow. We demonstrated the feasibility of our approach by designing and con-
structing a complex robotic timber assembly process that involves tool changes
and robot movement in a cluttered space.

Although our design validation approach can provide more granular infor-
mation to the designer when a conflict arises (e.g., showing points of contact
in a collision check), we emphasize that our framework differs significantly from
classical "wicked problems,’ [2] which are characterized by ill-defined, subjective
goals. In contrast, our problem context involves formally defined constraints that
are more similar to constraint satisfaction problems. Nevertheless, our current
system still relies on subjective human intuition to decide which parameter to
adjust, how to adjust it, and when to backtrack to a previous design stage.
Future work should aim to derive formalized models from this intuition-based
conflict resolution to guide automated design systems more effectively.

As we build more capable robotic fabrication systems to respond to more
complex design demands, planning becomes increasingly important as the inter-
face between design and robot capabilities. We believe that this paper is the first
step towards a more intelligent computer-assisted design future, where comput-
ers are not limited to validating designs but also diagnosing design problems and
suggesting remedies.

References

1. Braumann, J., Brell-Cokcan, S.: Parametric robot control: Integrated CAD/CAM
for architectural design. In: Proceedings of the 31st Annual Conference of the
Association for Computer Aided Design in Architecture (ACADIA). pp. 242-251.
Banff (Alberta), Canada (2011). https://doi.org/10.52842/conf.acadia.2011.242

2. Buchanan, R.: Wicked problems in design thinking. Design issues 8(2), 5-21 (1992)

https://doi.org/10.52842/conf.acadia.2011.242
https://doi.org/10.52842/conf.acadia.2011.242

16

10.

11.

12.

13.

14.

15.

16.

17.

Leung and Huang

Chen, J., Li, J., Huang, Y., Garrett, C., Sun, D., Fan, C., Hofmann, A., Mueller,
C., Koenig, S., Williams, B.C.: Cooperative task and motion planning for multi-
arm assembly systems (arXiv:2203.02475) (Mar 2022), http://arxiv.org/abs/2203.
02475

Coumans, E., Bai, Y.: PyBullet, a Python Module for Physics Simulation for
Games, Robotics and Machine Learning (2016), http://pybullet.org

Eversmann, P., Gramazio, F., Kohler, M.: Robotic prefabrication of timber struc-
tures: Towards automated large-scale spatial assembly. Construction Robotics 1(1—
4), 49-60 (2017). https://doi.org/10/ggb5ds

Gandia, A., Parascho, S., Rust, R., Casas, G., Gramazio, F., Kohler, M.: Towards
automatic path planning for robotically assembled spatial structures. In: Robotic
Fabrication in Architecture, Art and Design. pp. 59-73. Springer (2018)

Hack, N., Lauer, W.V.: Mesh-mould: Robotically fabricated spatial meshes as
reinforced concrete formwork. Architectural Design 84(3), 44-53 (2014). https:
/ /doi.org/10/ggb51z

Hartmann, V.N., Orthey, A., Driess, D., Oguz, O.S., Toussaint, M.: Long-horizon
multi-robot rearrangement planning for construction assembly. IEEE Transac-
tions on Robotics 39(1), 239-252 (Feb 2023). https://doi.org/10.1109/TRO.2022.
3193020

Helm, V., Willmann, J., Thoma, A., Piskorec, L., Hack, N., Gramazio, F., Kohler,
M.: Iridescence print: Robotically printed lightweight mesh structures. 3D Printing
and Additive Manufacturing 2(3), 117-122 (2015)

Huang, Y., Garrett, C., Mueller, C.: Constructability-driven design of frame struc-
tures with state-space search methods. Automation in Construction 167, 105711
(Nov 2024). https://doi.org/10.1016 /j.autcon.2024.105711

Huang, Y., Garrett, C.R., Ting, 1., Parascho, S., Mueller, C.T.: Robotic additive
construction of bar structures: Unified sequence and motion planning. Construction
Robotics 5(2), 115-130 (Jun 2021). |https://doi.org/10.1007/s41693-021-00062-z
Huang, Y., Leung, P.Y.V., Garrett, C., Gramazio, F., Kohler, M., Mueller, C.: The
new analog: A protocol for linking design and construction intent with algorithmic
planning for robotic assembly of complex structures. In: Symposium on Compu-
tational Fabrication. pp. 1-17. ACM, Virtual Event USA (Oct 2021). |https://doi.
org/10.1145/3485114.3485122, https://dl.acm.org/doi/10.1145/3485114.3485122
Kuffner, J.J., LaValle, S.M.: RRT-connect: An efficient approach to single-query
path planning. In: Proceedings 2000 ICRA. Millennium Conference. IEEE Interna-
tional Conference on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065). vol. 2, pp. 995-1001. IEEE (2000)

Leung, P.Y.: DiRT: Distributed Robotic Tools for Spatial Timber Assembly
with Integral Timber Joints. Doctoral Thesis, ETH Zurich (2023). |https://doi.
org/10.3929 /ethz-b-000647367, https://www.research-collection.ethz.ch/handle/
20.500.11850,/647367

Leung, P.Y.V., Huang, Y., Garrett, C., Gramazio, F., Kohler, M.: Planning non-
repetitive robotic assembly processes with task and motion planning (TAMP). In:
Robotic Fabrication in Architecture, Art and Design (2024)

Schwartz, T.: HAL: Extension of a visual programming language to support teach-
ing and research on robotics applied to construction. In: Robotic Fabrication in
Architecture, Art and Design 2012, pp. 92-101. Springer (2012)

Sherkat, S., Skoury, L., Wortmann, A., Wortmann, T.: Artificial Intelligence Au-
tomated Task Planning for Fabrication. In: Dorfler, K., Knippers, J., Menges,
A., Parascho, S., Pottmann, H., Wortmann, T. (eds.) Advances in Architectural

http://arxiv.org/abs/2203.02475
http://arxiv.org/abs/2203.02475
http://pybullet.org
https://doi.org/10/gg55ds
https://doi.org/10/gg55ds
https://doi.org/10/gg55fz
https://doi.org/10/gg55fz
https://doi.org/10/gg55fz
https://doi.org/10/gg55fz
https://doi.org/10.1109/TRO.2022.3198020
https://doi.org/10.1109/TRO.2022.3198020
https://doi.org/10.1109/TRO.2022.3198020
https://doi.org/10.1109/TRO.2022.3198020
https://doi.org/10.1016/j.autcon.2024.105711
https://doi.org/10.1016/j.autcon.2024.105711
https://doi.org/10.1007/s41693-021-00062-z
https://doi.org/10.1007/s41693-021-00062-z
https://doi.org/10.1145/3485114.3485122
https://doi.org/10.1145/3485114.3485122
https://doi.org/10.1145/3485114.3485122
https://doi.org/10.1145/3485114.3485122
https://dl.acm.org/doi/10.1145/3485114.3485122
https://doi.org/10.3929/ethz-b-000647367
https://doi.org/10.3929/ethz-b-000647367
https://doi.org/10.3929/ethz-b-000647367
https://doi.org/10.3929/ethz-b-000647367
https://www.research-collection.ethz.ch/handle/20.500.11850/647367
https://www.research-collection.ethz.ch/handle/20.500.11850/647367

18.
19.

20.
21.

22.

Design Validation and Conflict Resolution for Robotic Fabrication 17

Geometry 2023, pp. 249-260. De Gruyter (Oct 2023). |https://doi.org/10.1515/
9783111162683-019

Sucan, I.A., Chitta, S.: Moveit! (2018), http://moveit.ros.org

Thoma, A., Adel, A., Helmreich, M., Wehrle, T., Gramazio, F., Kohler, M.: Robotic
fabrication of bespoke timber frame modules. In: Willmann, J., Block, P., Hutter,
M., Byrne, K., Schork, T. (eds.) Robotic Fabrication in Architecture, Art and
Design 2018. pp. 447-458. Springer International Publishing, Cham (2019). https:
//doi.org/10.1007/978-3-319-92294-2 34

visose: Robots (Jun 2022), https://github.com/visose/Robots

Yao, Z., Gupta, K.: Path planning with general end-effector constraints. Robotics
and Autonomous Systems 55(4), 316-327 (2007). https://doi.org/10,/dtd3m6
Zargar, S.H., Leicht, R.M., Wagner, A.R., Brown, N.C.: Integrating early assess-
ment of robotic constructability into design optimization of a standalone class-
room. Automation in Construction 157, 105175 (Jan 2024). https://doi.org/10.
1016/j.autcon.2023.105175

https://doi.org/10.1515/9783111162683-019
https://doi.org/10.1515/9783111162683-019
https://doi.org/10.1515/9783111162683-019
https://doi.org/10.1515/9783111162683-019
http://moveit.ros.org
https://doi.org/10.1007/978-3-319-92294-2_34
https://doi.org/10.1007/978-3-319-92294-2_34
https://doi.org/10.1007/978-3-319-92294-2_34
https://doi.org/10.1007/978-3-319-92294-2_34
https://github.com/visose/Robots
https://doi.org/10/dtd3m6
https://doi.org/10/dtd3m6
https://doi.org/10.1016/j.autcon.2023.105175
https://doi.org/10.1016/j.autcon.2023.105175
https://doi.org/10.1016/j.autcon.2023.105175
https://doi.org/10.1016/j.autcon.2023.105175

	Design Validation and Conflict Resolution for Robotic Fabrication: A Multi-Stage Framework for Complex and Non-Repetitive Processes

