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Abstract

Many useful classes of non-convex optimization problems have multiple local optimal solutions. These
problems are commonly found in numerous applications including topology optimization and machine
learning. One of the methods recently proposed to efficiently explore multiple local optimal solutions
without random re-initialization relies on the concept of deflation. In this paper, different ways to use
deflation in non-convex optimization and nonlinear system solving are discussed. A simple, general and
novel deflation constraint is proposed to enable the use of deflation together with existing nonlinear
programming solvers or nonlinear system solvers. The connection between the proposed deflation
constraint and a minimum distance constraint is presented. Additionally, a number of variations of
deflation constraints and their limitations are discussed. Finally, a number of applications of the proposed
methodology in the fields of approximate Bayesian inference and topology optimization are presented.
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1 Introduction

Non-convex optimization problems are used in
numerous applications including: machine learn-
ing, mechanical design, economics, and the design
of clinical trials, among many other applications.
One of the fundamental challenges of non-convex
optimization is the existence of multiple local min-
imizers. Local first- and second-order optimization
algorithms often get stuck in a particular local min-
imizer without any guarantees that this is the best
solution that can be found. The ability to explore
multiple local minimizers is often important in
practice to find better solutions or to provide more

diverse choices to decision makers if all the choices
are nearly equally good or if the optimization objec-
tives cannot capture users’ preferences completely.
For example, multiple car body designs can be
reported and decision-makers can choose one based
on the subjective aesthetic appeal.

Despite the popularity of using standard non-
convex optimization techniques with various ran-
dom or heuristic restart strategies to find multiple
optima (Rinnooy Kan and Timmer, 1987; Kaelo
and Ali, 2006; Arnoud et al, 2019), these methods
can be computationally inefficient because they do
not protect against converging to the same solution
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from different starting points. In contrast, deflation-
based methods (Papadopoulos et al, 2021) have the
benefit of provably converging to distinct solutions
under certain assumptions, even when starting
from the same initial guess. However, deflation was
originally developed for solving nonlinear systems
of equations (Brown and Gearhart, 1971; Farrell
et al, 2016), and later extended to non-smooth
equation solving (Patrick E. Farrell and Surowiec,
2020) which generalize finding feasible solutions to
equality and inequality constraints. Using deflation
for optimization required a significant adaptation
of a specific nonlinear programming algorithm
(Papadopoulos et al, 2021). Different optimization
problems and applications are generally best solved
by different optimization algorithms. Having to
re-design the optimization algorithm to use defla-
tion prevents deflation from being used with other
optimization algorithms.

In this paper, we propose a simple, yet effective
and provably correct way of making use of deflation
by reformulating the non-convex optimization prob-
lem, instead of adapting the backend optimization
algorithm. We then prove the equivalence of this
approach to a minimum-distance constraint under
certain assumptions. The proposed approach has
the benefit of (1) being simpler to implement since
it is a formulation change rather than an algorith-
mic change; and (2) being more flexible allowing
the use of arbitrary optimization algorithms that
are suitable for the problem class at hand. We
show a number of examples from different applica-
tions, each using deflation together with the most
suitable and/or popular optimization algorithm for
the respective application, which is not achievable
by previous deflation-based approaches.

One limitation of the proposed approach is that
it requires the handling of a non-convex, inequality
constraint even if the original problem was uncon-
strained. However, one way to workaround this
limitation is demonstrated in the examples section.

2 Related work

Systematic multi-start. Systematically restart-
ing the optimization multiple times from random
or deterministically diverse (McKay M. D., 1979;
Kucherenko and Sytsko, 2005) initial solutions is a
common strategy to find multiple local minimizers
in non-convex optimization. Some popular algo-
rithms following this approach are the multilevel

single linkage algorithm (MLSL) (Rinnooy Kan
and Timmer, 1987), the controlled random search
algorithm (CRS) (Kaelo and Ali, 2006), and the
TikTak algorithm (Arnoud et al, 2019). However,
all the above approaches can be computationally
expensive and wasteful, since restarting the opti-
mization algorithm from a different initial solution
may not give a different local minimizer.

Divide and conquer Other similar algo-
rithms rely on sub-dividing the search space into
smaller hyper-rectangles to narrow down the search
space for each sub-problem. Algorithms in this
category include the StoGo algorithm (Gudmunds-
son, 1998; K. Madsen and Zilinskas, 1998) and the
DIviding RECTangles (DIRECT) algorithm (Jones
et al, 1993; Gablonsky and Kelley, 2001). However,
these approaches do not scale well with the number
of decision variables m since the number of fixed
size hyper-rectangles one can divide an m dimen-
sional solution space into grows exponentially with
m.

Hyperparameter and bilevel optimiza-
tion. Alternatively, hyperparameter optimization
techniques (Li et al, 2018; Falkner et al, 2018) or
bilevel optimization (Sinha et al, 2018) can be used
to optimize the starting point of the lower-level
optimization algorithm. One can compose a global
search algorithm such as an evolutionary algorithm
(Gendreau and Potvin, 2010) and a local search
algorithm together to create an algorithm that can
explore different initial solutions and find the best
local minimizers in different neighborhoods. This
family of global-local algorithms is also sometimes
termed memetic algorithms (Moscato and Cotta,
2010).

Global metaheuristics. Besides their use in
memetic algorithms, global metaheuristic optimiza-
tion algorithms (Gendreau and Potvin, 2010) can
also be used as standalone algorithms, but these
algorithms do not tend to scale well to large prob-
lems since they usually do not exploit the often
available gradients and sometimes Hessians of
objective and constraint functions.

Tunneling-based multi-start. Tunneling
(Levy and Gomez, 1981; Gomez and Levy, 1982;
Barron and Gomez, 1991; Gomez et al, 2003; Zhang
and Norato, 2018) is another heuristic technique
often used to find multiple local minimizers by
finding a sufficiently different starting point with
a similar or better objective value as the best solu-
tion found so far. The optimization problem is then
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re-solved starting from this new point in order to
converge to a different solution. However, this is
a two-step approach consisting of first solving the
optimization problem and then finding a new, suf-
ficiently different initial point. And the success in
finding distinct minimizers depends on the success
in finding a sufficiently different starting point.

Exact global optimization. In addition to
restart use, there are also some well-known exact
global optimization algorithms for some classes of
non-convex optimization (Tawarmalani and Sahini-
dis, 2005; Sahinidis, 2017; Belotti et al, 2009;
Vigerske and Gleixner, 2018; Wilhelm and Stu-
ber, 2020; Nagarajan et al, 2019, 2016; Ratschek
and Rokne, 2007; Gecode Team, 2006). These
approaches however tend to require the explicit
analytical mathematical expressions of the objec-
tive and constraint functions so they are not
suitable for black-box non-convex optimization,
and they typically don’t scale well to large prob-
lems in practice, where the exactness guarantee
has an exponential computational time complexity
in the number of variables.

Deflation-based multi-start. Deflation is a
recently proposed technique that employs Newton-
like methods to find multiple solutions of non-linear
systems of equations and optimization problems
with equality and inequality constraints (Brown
and Gearhart, 1971; Farrell et al, 2015, 2016,
2020). Assuming that the underlying Newton-like
algorithm converges, under certain assumptions,
a deflation-based solver is guaranteed to con-
verge to a unique solution each time the solver is
started from the same initial solution. This has the
promise of being much less wasteful than multi-
start optimization approaches. Verifying whether
an operator is a deflation operator can be a difficult
task in practice. This is because certain conditions
must be met for it to be considered a deflation
operator (see Section 3.2.1). However, the method
has been shown to perform well in practical appli-
cations even when the candidate deflation operator
is not proven to be a true deflation operator. This
is because even in cases where the optimization
algorithm converges to the same solution, deflating
the same solution multiple times eventually leads
to convergence to a different solution. The num-
ber of times a solution needs to be deflated is also
termed its multiplicity when solving for roots of a
polynomial.

Deflation was also used in a primal-dual interior
point optimization algorithm (Wright, 1997) to
find multiple locally optimal designs in mechanical
design optimization problems (Papadopoulos et al,
2021). However, this deflated optimizer had to re-
invent a primal-dual interior point optimization
algorithm (Wright, 1997) since off-the-shelf solvers
such as the Interior Point OPTimizer (IPOPT)
(Wichter and Biegler, 2006) could not be used
directly for reasons to be presented in this work.
The inability to use existing optimization solvers is
a huge limitation of this approach, since different
optimization algorithms tend to be more suitable
for different problems and applications.

3 Background

3.1 Sufficient optimality conditions
for regular points

We aim to find multiple solutions for the following
nonlinear program (NLP):

minimize 1(@)

subject to (1)
c(x) =0,

I<z<u

where | € (—00,00)",u € (—00,00)™ are the finite
(for simplicity) lower and upper bounds of the vari-
able . The objective function f : R® — R and
the equality constraints ¢ : R® — R™, with m <n
are assumed to be twice continuously differentiable.
Problems with general nonlinear inequality con-
straints d(x) < 0 can be converted to equality
constraints by adding slack variables.
Let:

Llw A ze,2o) = f(@) + cl@) A+
(@-wlz —(@-D)Tz (2

where A € R™ is the Lagrangian multiplier
vector of the equality constraints, z_ € R,z €
R’ are the Lagrangian multiplier vectors of the
bound constraints.

If x is regular and is a local minimizer of the
NLP, then 3(A, z4, z_) such that:

Vel(x,\z4,2_)=0 (3a)
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c(x)=0 (3b)
I<z<u (3c)

z; >0 (3d)

z_>0 (3e)

(x—u) zy = (3f)
(x -T2 = (3g)

Conditions 3 are known as the first—order
Karush-Kuhn-Tucker (KKT) sufficient conditions
for optimality respectively. A point x that satis-
fies Condition 3 is typically called a KKT point
(Nocedal and Wright, 2006). Finding multiple solu-
tions of the NLP can be reduced to finding solutions
that satisfy Condition 3, while following descent
directions and avoiding saddle points.

3.2 Deflation

Deflation is a technique that systematically modi-
fies a nonlinear problem to ensure that Newton’s
method does not converge to a known root, allow-
ing unknown roots to be discovered from the same
initial guess (Farrell et al, 2016).

3.2.1 Deflation for solving nonlinear
equations

Farrell et al (2016) proved that under certain con-
ditions, solving a system of n nonlinear equations:

F(x)=0

starting from the same initial solution @y can
converge to multiple locally optimal solutions by
applying a deflation operator whenever a solution
is found. Let the first solution found be x;. The
deflated nonlinear system of equations is given by:

M(x; 1)F(x) =0

where M (z; ;) is the deflation operator defined
as:

M (x; 1) = m(x; )T
m(x; x1) =|lex —x1|| P+ 0
The power p controls the rate of blow-up as x

approches &1 and Z is the n x n identity matrix.
The shift parameter o is used to ensure that the

deflated system converges to the original F'(x) as
[l — 1]] — oo (Farrell et al, 2015).

After solving the system once, one can solve the
deflated system and obtain a new solution xs. One
of the conditions required to prove the convergence
of the proposed algorithm to a different solution
T is:

lim |[M (z; z1)F(z)|| >0 (5)

a1

To deflate away from multiple found solutions, the
original method proposes multiplying the operators
and solve

H M(z; xp) F(x) =0
k=1

where K is the number of found solutions. To
improve numerical stability, summation instead of
multiplication can also be used.

3.2.2 Deflation for NLP optimization

To apply deflation to finding multiple solutions
of an NLP, one can write most of Condition 3 as
F(z,\) =0 (see the Appendix for more detailed
derivations) and solve for different solutions of the
deflated system:

M(x; 1)F(x,\) =0

while ensuring a descent direction is taken at every
step. However, solving this nonlinear system of
equations using Newton-like algorithms requires
evaluating the Jacobian of the residual of the
deflated nonlinear system of equations. One of
the most popular existing implementations of the
primal-dual interior point algorithm in IPOPT
(Wichter and Biegler, 2006) assumes the Jacobian
of the top block of F to be symmetric (since it
is the Hessian of the Lagrangian). This makes it
difficult to reuse IPOPT with deflation directly.
Arguably, this is also the main motivation for
Papadopoulos et al (2021) to develop a special-
ized primal-dual interior point algorithm from
scratch for use with deflation. For more details
on the derivations relevant to this discussion, see
Appendix Section A.
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4 Method

In this section, the use of deflation and the choice
of the optimization algorithm to use will be decou-
pled by making use of a deflation constraint that
only requires a change in the formulation of
the optimization problem without specifying the
algorithm.

4.1 Formulating deflation as a
constraint

Instead of deflating the optimality conditions, one
can create a new constraint and variable that
enforce the same deflation effect. Let y > 0 be a
new scalar variable. One possible constraint to add
1S:

m(x; x1) = [lz —x| P +o<y  (6)

If after adding this constraint, the optimal solu-
tion @, obtained has a finite y in exact arithmetic,
then x; # @2 since limg_,,, m(x; x1) = co. Fur-
thermore, it can be shown that every KKT point
of the new NLP with a finite y is a KKT point of
the original formulation.

Lemma 4.1. If (z*,y*) is a reqgular KKT point
to the following NLP:

ml%l}glze f(x)

subject to

c(x) =0, (7)
m(z; @1) <y,

I<zx<u

for a finite y*, and m is bounded from below, then
x* is a reqular KKT point to problem 1 and x* #+
1.

Conversely, if * # a1 is a reqular KKT point
to problem 1, there exists y* such that (x*,y*) is
a reqular KKT point to the above NLP where m is
bounded from below.

Proof Let the Lagrangian multipliers of the equality
constraints be A, z_ be those of the > bound con-
straints, and z4 be those of the < bound constraints.
Let the additional Lagrangian multiplier of the defla-
tion constraint be 7. The stationary conditions of

problem 7 are:
Vaf(x)+ Vmc(w)T)\ +zy+z- +nVem(x; 1) =0
n=20
Since 1 will be 0 at any KK T point, the stationarity
conditions of problem 1 will be satisfied:

Vef(@)+ Vac(@) A+ 2y —2_ =0

Additionally, the complementarity condition of the
deflation constraint and the dual feasibility constraint
n > 0 are trivially satisfied at n = 0. Since the con-
straints of problem 1 are a subset of the constraints
of problem 7, " must be feasible to the original
problem and the complementarity conditions of those
constraints must be satisfied.

Given that y* is finite, (z*,y") is feasible to the
deflation constraint in problem 7 and m is bounded
from below, then m(x*; x1) must be finite which
implies that &* # x1. This completes the first part of
the proof.

To prove the converse, consider the stationarity
conditions of the original problem:

Vef(x) + Vec@) A+2z, —2_ =0
Setting y* = m(z*, 1) and the Lagrangian multi-
plier n = 0 would satisfy the deflation constraint, its
complimentarity slackness condition and the stationar-

ity conditions of the deflation problem. This completes
the proof. O

Note that the proof above can be trivially
generalized to inequality-constrained and even
conic-constrained nonlinear programs. Therefore,
this deflation constraint approach is a completely
generic and noninvasive way to use deflation in
optimization.

Since the deflation constraint approach only
requires a change in the optimization formulation
rather than the optimization routine, any KKT
seeking nonlinear programming algorithm, for
example, the method of moving asymptotes (Svan-
berg, 1987, 2002) or the augmented Lagrangian
algorithm (Bertsckas, 1996) can be used to solve
the deflated formulation. This is a much more
generic and simpler way to use deflation than to
deflate all of the optimality conditions.

4.2 Alternative deflation constraint

One can also avoid the introduction of an addi-
tional variable y replacing it with a large finite
constant M.
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Lemma 4.2. If (z*) is a regular KKT point to
the following NLP:

minimize f(x)

subject to

c(xz) =0, (9)
m(z; x1) < M,

I <x<u

for some finite constant M, the constraint
m(x; x1) < M is satisfied at a strict inequality,
and m is bounded from below, then x* is a regular
KKT point to problem 1 and x* # x.

Proof Let the Lagrangian multipliers of the equality
constraints be A, z_ be those of the > bound con-
straints, and z4 be those of the < bound constraints.
Let the additional Lagrangian multiplier of the defla-
tion constraint be 7. The stationary conditions of
problem 9 are:
Vo f(z) + Vmc(m)T)\ +zy —z- +nVem(z; 1) =0
By the complimentarity slackness conditions, since
the deflation constraint is satisfied at a strict inequality,
1 must be equal to 0 at any KKT point. The rest of
the proof is identical to the proof of Lemma 4.1 a

4.3 Simple deflation for nonlinear
systems

Much like in optimization, the following deflation
equality constraint can be added to a nonlinear
system of equations:

m(x; ©1) =y (11)

solving for both @ and y. It is trivial to see that if
the algorithm converges to a solution (x*, y*) with
a finite y*, then x* will satisfy the original set of
equations and x* # x;.

4.4 Deflating multiple intermediate
solutions

In Papadopoulos et al (2021), the deflation opera-
tor was used to deflate away from the intermediate
solutions of the barrier subproblems. This is a nice
way to automatically adapt the deflation power by
ensuring that we deflate away from the entire crit-
ical path of the interior point optimizer the next
time the system is solved. It can also be used to

provide accelerated convergence by encouraging
solutions to intermediate barrier subproblems to
be more different from the previous barrier sub-
problems. The same approach can be used in any
nonlinear programming algorithm by using a man-
ual callback and adding new ”known solutions” to
the deflation operator for every fixed number of
iterations.

4.5 Deflation constraint is a
minimum distance constraint

Assuming finite non-zero m(x; ;) > 0 and
y > o, the deflation constraint in Equation (7) is
equivalent to the following distance constraint :

le — a1 [[” > 2 (12)

where z = ﬁ It can be seen more easily that the
deflation technique simply imposes a constraint on
the proximity to the already found solutions. If
the NLP optimizer approaches z = 0 or y = oo,
then the deflation operator may not be swaying
the solution sufficiently away from known solu-
tions. When using the fixed, large-M formulation
in Equation (9), instead of y tending to infinity,
the deflation constraint will be satisfied in equality
when deflation fails to make the algorithm converge
to a different solution. The main hyperparame-
ters that can be tuned in the deflation constraint
are the distance measure used, the power p and
the shift parameter o to ensure convergence to a
different solution.

4.6 Different distance measures

One can change the distance measure used in the
deflation function to more interesting choices than
a simple power of a 2-norm. The following are
different ways to change the distance measure to
achieve different desired effects:

1. Use a £, norm distance measure instead of a
power p of a £ norm, or use a power p of a £,
norm distance measure.

2. Use a positive semi-definite weight matrix @
and define the distance as the generalized ¢
norm distance: (z — x1)TQ(x — x1). If Q is
diagonal, it can be used to give different weights
to different deviation terms.

3. The distance measure can detect symmetries in
the solution space if 2 solutions are numerically
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different but practically identical. In topology
optimization, for example, it may make more
sense to define the distance measure in the
pseudo-densities p space after applying density
filtering, interpolation and Heaviside projection
to the solution x, rather than calculating dis-
tance in the x space. This more accurately
reflects the desire of the optimizer to obtain dif-
ferent designs rather than different, symmetric
representations of the same design.

4. In topology optimization also, the number of
design variables can be extremely large with
many similar looking designs that have slightly
different numerical values. A particular modi-
fication to the distance measure can therefore
be useful to workaround this curse of dimen-
sionality problem. Let 0 = 0 and consider the
following deflation function:

m(x; 1) = max(||x — z1|| —r,0)7P  (13)

This deflation function treats all solutions in the
hyper-ball of radius r around «; as identical to
1. This function is smooth and twice differen-
tiable for all ¢ € {x : ||x — x1|| > r}. A KKT
solution with a finite y (in exact arithmetic) can
be similarly shown to be equivalent to finding
a new optimal solution outside the hyper-ball.
This new parameter r can be useful for high-
dimensional problems in topology optimization
where two designs can be numerically different
but visually and practically identical. Another
side advantage of using r > 0 is that even if
deflation fails to push the optimization algo-
rithm away from @1, the new solution obtained
is guaranteed to be outside the hyper-ball.

5. In variational inference, the Kullback-Leibler
(K-L) divergence can be used to deflate away
from known distributions that locally optimize
the K-L divergence to the posterior distribution.

6. In deep learning, a distance measure between
the neuron values can be used instead of weights
and biases to account for symmetries in the
weights.

4.7 Potential problems with
deflation
Although deflation has proven rather successful

in a number of root finding and optimization
applications, it is not free of limitations which

need to be addressed or acknowledged when imple-
menting or using the algorithm. The following
are some common problems associated with the
proposed deflation constraint, most of which are
also concerns when using the traditional deflation
method.

1. The deflation effect may not be strong enough
where the algorithm can still approach i,
asymptotically increasing y to oo. This is sim-
ilar to what can happen in a classic deflation
formulation when the condition in Equation (5)
is violated.

2. The optimization is not done in exact arithmetic
but rather up to machine precision. This can
make the algorithm converge to a solution with
a finite but large value value of y* instead of
overflowing to co. Therefore, the finiteness of
y* may not be a good enough indication that
the algorithm has converged to a new solution
other than x;.

3. Deflation guarantees that if convergence hap-
pens, the solution will be different. However, it
does not guarantee that convergence will hap-
pen to begin with. Even more so, deflating away
from one solution is likely to push the optimizer
away from other nearby locally optimal solu-
tions if they exist. This can make it particularly
challenging to fine-tune the hyperparameters of
the algorithm. However, arguably this can also
be a desirable effect of deflation since it means
that more diverse solutions are naturally more
likely to be output by the algorithm.

4. Careful selection of the power p and other hyper-
parameters used in the chosen distance measure
is required.

5 Results and Discussion

In this section, a number of applications of defla-
tion and non-convex optimization are showcased
from machine learning and topology optimization.
The main highlight of this section is that known
popular algorithms were used or minimally modi-
fied to solve the deflation sub-problems. In all of
the examples, the same initial solution was used in
the deflation sub-problems to showcase the efficacy
of the approach proposed. The implementation



Springer Nature 2021 ETEX template

and examples, including detailed hyperparameter
settings, can be found in the supplementary code'.

5.1 Classic variational inference on
mixture of Gaussian
distributions

In this section, an example of the use of deflation
in variational inference will be demonstrated. Vari-
ational inference is a computational method that
approximates complex probabilistic distributions
by simpler, tractable distributions, facilitating scal-
able and efficient inference for large datasets (chap.
10, Bishop and Nasrabadi (2006)).

In this example, we consider a standard varia-
tional inference test problem that uses a Gaussian
distribution ¢(x; u, o) with mean p and standard
deviation o to approximate a mixture model p(x)
of 10 univariate Gaussian distributions g;(x) for
i € 1...10, where p(z) = 221 gi(x). In this
problem, the g;s are given and the goal is to find
60 = (u,0) which minimize the Kullback-Leibler
divergence between the two distributions p and ¢:

L(6) = ELBO(u, 0) (14)

t/kogq(zmx))q(x;u,v)dx

T pi,0

In our implementation, the automatic differ-
entiation variational inference algorithm (ADVT)
(Kucukelbir et al, 2015) was used together with the
decayed ADAGrad stochastic optimization algo-
rithm (Duchi et al, 2011) from the AdvancedVI.jl
2 package to minimize a stochastic estimator of the
K-L divergence. Distributions.jl (Lin et al, 2022)3
was used to define the mixture of Gaussians, the
variational family, and the estimator of the K-L
divergence objective function. The deflated varia-
tional approximation problem can be formulated
using the loss function L(8) as follows:

minimize  L(0)
0.y
K (15)
subject to Zm(@; 0.)<y
k=1

1y /github.com/JuliaTopOpt/deflation_examples
g/AdvancedV1.jl

github.com/JuliaStats/Distributions.jl

1wtps:/
211tt1)>:,
311ttp>:,

github.com/Turing

where 0 is the vector of parameters (u,o) of the
variational family ¢ and 6}, is the previously found
local minimizer of the loss function from subprob-
lem %, and K is the total number of found solutions
so far. m and y are the deflation function and
variable respectively as described in the previous
sections.

Since the objective is a stochastic estima-
tor of the K-L divergence and the constraint is
non-convex, a log-barrier approach (Fiacco and
Meccormick, 1968) is used to transform the stochas-
tic constrained problem to an unconstrained one.
The log-barrier formulation becomes:

miréimize L(8) —rlog (y - Zszl m(0; Bk)>
) y

(16)
where r is defined as a decaying coefficient
approaching 0. The above problem was solved 10
times from the same initial solution 6, each time
converging to different Gaussian approximations
and appending it to the list of found solutions. The
distance function used between solutions in the
deflation function was the analytic K-L divergence
between the 2 Gaussian distributions offset by a
radius r. Let d(0) = N (u = 0[1],0 = exp(6[2])) be
the Gaussian distribution obtained from solution
0. The K-L divergence based deflation function m
used was therefore:

m(0; 0;) = max (div(d(@), d(Hk)> -1, O)
(17)

where div is the K-L divergence between two Gaus-
sian distributions. Note that the minimum radius
of 1 was used to enforce convergence to a differ-
ent distribution even if the convergence condition
(Equation (5)) of deflation were violated. The
optimal Gaussian distributions’ obtained and the
target distribution’s probability density functions
are shown in figure 1. The results indicate that
deflation was successful at generating reasonable
mode-seeking approximations of the target mixture
of Gaussians.


https://github.com/JuliaTopOpt/deflation_examples
https://github.com/TuringLang/AdvancedVI.jl
https://github.com/JuliaStats/Distributions.jl
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------- target pdf

approx pdf
1~10

50

Fig. 1: The figure shows the target probability density
function (pdf) of the mixture of Gaussians and the
pdf curves of the multiple Gaussian approximations
obtained by solving the deflated variational inference
problem 10 times from the same initial Gaussian
solution N (x = 0,0 = exp(5.0)).

5.2 Pathfinder algorithm for
variational inference

In this section, we demonstrate how to combine our
deflation formulation with a recently proposed vari-
ational inference algorithm called the pathfinder
algorithm (Zhang et al, 2021) to approximate
a target distribution p(x) with a Gaussian mix-
ture approximation g(x). The same mixture of k
Gaussian p(z) was used in this experiment, for
k=2,4,6 and 8.

The pathfinder algorithm relies on multi-start
optimization of the log probability of the target
distribution p(z) to find maximizers z*. The trajec-
tory of intermediate solutions and gradients from
the optimization then get used to construct a Gaus-
sian approximation per trajectory. Re-starting the
optimization from a different initial point can
result in a different optimal solution and trajectory,
leading to a potentially different local Gaussian
approximation. These Gaussian approximations
are then combined and weighted in a mixture of
Gaussians ¢(z) that is used to approximate the tar-
get distribution p(x). The original algorithm relies
on restarting the optimization from random initial
solutions. In this work, we use deflation instead,
starting the optimization from the same initial
point every time. The readers are referred to Zhang
et al (2021) for more details of the algorithm.

The Pathfinder.jl (Axen, 2021)* package was
adapted to use IPOPT (Wichter and Biegler, 2006)
as an optimizer as wrapped in the Nonconvex.jl
° package. Instead of random restarts, the same
initial solution of 0.0 was used in all the deflation-
based pathfinder sub-problems. The target (blue)
and approximate (orange) mixtures of Gaussians
are shown in figure 2. The results look good given
that all the optimization sub-problems were started
from the same initial solution (z = 0), this is a
fairly positive result.

(a) Mixture of 2 Gaussians  (b) Mixture of 4 Gaussians

(c) Mixture of 6 Gaussians

(d) Mixture of 8 Gaussians

Fig. 2: Target (blue) and approximate (red) mixtures
of Gaussian probability density functions using the
same initial solution of 0.0 in all of the deflation-based
sub-problems in the pathfinder algorithm.

5.3 Topology optimization - volume
constrained compliance
minimization

The volume-constrained compliance minimization

problem from topology optimization (TO) seeks

to find designs for physical structures that are
as stiff as possible (i.e., least compliant) with
respect to known boundary conditions and load-
ing forces while adhering to a given material
demand. It has been well studied and widely
applied in mechanical, aerospace, and architectural
engineering (Bendsoe and Sigmund, 2003). How-
ever, because TO problems are high-dimensional,
partial differential equation (PDE) constrained,

4htt ps://github.com/mlcolab/Pathfinder.jl
Shitt ps://github.com/JuliaNonconvex/Nonconvex.jl
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and non-convex, finding multiple local minima
that are visually different has been challenging
and rarely studied, despite its practical values. A
compliance-minimizing, volume-constrained TO
problem can be formulated as:

minimize f-u
xz eR"”
subject to

where « is the pseudo-density of cells in the domain,
f the given load vector, K (x) the stiffness matrix
from the finite-element discretization, V; the vol-
ume of grid element i, and V the user-specified
total volume bound. When «; = 0, the correspond-
ing cell is removed and when x; = 1 the cell is
kept.

We apply our deflation technique by adding an
extra constraint to problem 18, using the distance
measure that encourages visually different designs
mentioned in Section 4.6:

K K
Zm(:c; ) = Zmax(”w —xg|| —7r,0)7P <y
k=1 k=1

(19)

where K is the number of found local minima from
previous deflation iterations. In our experiments,
p=4,r=20,0<y <100.

Here, two classic topology optimization bench-
mark problems are tested: a continuum MBB beam
domain of dimension 120 x 40 and a cantilever truss
domain of dimension 40 x 10 (Figure 3). TopOpt.jl°
is used for the implementation of problem model-
ing, finite element analysis, and density filters. We
use the widely used Method of Moving Asymptotes
(MMA) algorithm (Svanberg, 1987) to solve both
the undeflated and deflated problems. Averaged
runtime results are presented in Table 1 and per-
deflation-iteration runtime statistics are presented
in Figure 6 and Figure 7. Figure 4 and Figure 5 visu-
alize the results of 20 iterations of deflation in both
domains. These results show that the proposed

Shitt ps://github.com/JuliaTopOpt/TopOpt.jl

deflation formulation generates visually different,
near-optimal designs deterministically, all starting
from the same initial guess. The runtime results
suggest that there are no significant changes in
running time due to the addition of a deflation
constraint to an already constrained optimization
problem.

Table 1: Deflated topology optimization runtime.
*: deflated problem runtime is averaged over all 20
deflation iterations.

TopOpt Problems x dim undeflated deflated”
Continuum (Fig. 4) 4800 121s 122s
Truss (Fig. 5) 3608 1.9s 1.6s

(a) (b)

Fig. 3: Topology optimization domains: (a) half
MBB beam continuum domain; (b) cantilevering truss
domain.

objective normalized by the first optimum

undeflated
1.00 >

0 5 10 15 2
deflation iteration
Fig. 4: Deflated results of the continuum half MBB
beam problem. Iteration 0 is the solution found by
solving the undeflated problem.
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Fig. 5: Deflated results of the discrete, cantilevering truss problem. Iteration 0 is the solution found by solving

the undeflated problem.

©
3
3

undeflated

runtime per deflation iteration (sec)
N
5
8

=]
3

0 5 10 15 20
deflation iteration
Fig. 6: Runtime per deflation iteration for the contin-
uum half MBB beam problem in Figure 4.

6 Conclusion and future work

In this work, a new way of using deflation was
proposed to find diverse solutions to non-convex
optimization problems. With the proposed prob-
lem reformulation, the deflation technique can be
easily applied to any non-convex problem using
existing, off-the-shelf optimizers. Promising results
of applying the proposed technique in solving prob-
lems from topology optimization and variational
inference are presented. We hope that our work
can enable applications of this simple, yet power-
ful idea of deflation to a broader set of problems
where multiple local optimal solutions are required.

- N N w
o ) 3 o

runtime per deflation iteration (sec)

o

0 5 10 15 20
deflation iteration

Fig. 7: Runtime per deflation iteration for the discrete,
cantilevering truss problem in Figure 5.

In the future, we hope to make use of deflation-
based optimization to enhance optimization-based
machine learning algorithms such as maximum like-
lihood estimation and to use it for model-based
design of experiments in clinical trials to explore
multiple possible designs.
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7 Replication of Results

The implementation and examples, including
detailed hyperparameter settings, can be found
in the supplementary code in https://github.com/
JuliaTopOpt/deflation_examples.
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Appendix A

In this section, derivations for the deflated KKT
system of the barrier sub-problem used by the inte-
rior point method (Wright, 1997) as implemented

in the IPOPT software (Wéchter and Biegler, 2006)
are presented.

A.1 KKT system of the barrier
problem

In TIPOPT, a log-barrier method is used to ensure

that I < x < u remains satisfied at every interme-

diate solution if the initial solution is within the
bounds. The barrier function is defined as:

B, (x,l,u) =
- u( Z log (z; — I;) + Z log (u; — xz)) (A1)

for some g > 0 which would go to oo if any of
the decision variables approaches one of its finite
bounds. This creates a barrier that prevents the
optimizer from ever reaching the finite bound. The
barrier sub-problem is defined as:

¢u(w) = f(w) + Bu(wvla u)
subject to c(x) =0

minimize
x

The KKT stationarity condition is therefore:
Vi(x)+Ve(x) ' — 2 — 2, =0
where A is the vector Lagrangian multipliers asso-

ciated with the equality constraint ¢(x) = 0, z; is
L and z, is

a vector whose i'" element is z;, = =
a vector whose i‘" element is z,, = u:rl

Additionally, let Z; be the diagonal matrix
whose diagonal is z;, Z,, be the diagonal matrix
whose diagonal is z,,, X; be the diagonal matrix
whose diagonal is: z;, = z; — l; and X, be the
diagonal matrix whose diagonal is: Z,,, = u; — ;.

The first-order KKT sufficient conditions for
optimality of the barrier problem, assuming the
constraint qualifications are satisfied, can be writ-
ten as:

Vi(x)+Ve(x)' A — 2 — 2, =0 (A2a
c(x)=0 (A2b
X1 Zi1—pul=0 (A2c
XouZul—pl=0  (A2d

l<zx<u (
z1>0 (A2f
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24 >0 (A2g)
where 1 is a vector of ones. Conditions A2c and A2d
ensure that the relationship between X, Z;, X,
and Z, is maintained according to the definitions
of z; and z,. In an interior point algorithm (e.g.
IPOPT Wiéchter and Biegler (2006)), primal-dual
solutions to the equality KKT conditions are found
using a Newton-like method while ensuing that the
inequality conditions are satisfied by projection.
In order to solve the barrier problem for a
given value p = 15, a damped Newton’s method is
usually applied to the primal-dual optimality condi-
tions. Here we use k to denote the iteration counter
for the inner iterations when solving the bar-
rier problem. Given an iterate (g, Ak, 21ks Zu.k)
with | < z, < u and 2,24 > 0, some
search directions (d¥,dp,d},d;*) are obtained
using the regularized linearization of the optimality
conditions (excluding the inequality conditions):

Wy A, -I 17 [d®

AT 0o 0o o ay |
Zip, 0 X3 O dil o
Zu,k 0 0 Xu,k dz“

Vi(xk) + ALk — 21k — Zuk
c(xy)
_ A3
X x 2yl — pyl (43)
Xu,kZu,k]- - :U‘Jl

where Ap = Ve(xp)? and W, =
V2, (f(zk) + c(zk)TAr) is the Hessian of the
Lagrangian function of the original problem. The
Lagrangian terms from the bounds constraints are
ignored because they don’t contribute to the Hes-
sian. When the Hessian of the Lagrangian is not
available, a - BFGS approximation (Nocedal and
Wright, 2006) of the Hessian can be used instead.
This changes the IPOPT algorithm from a second-
order algorithm to a first-order one. And the
Newton update becomes a quasi-Newton update.

Instead of solving the non-symmetric system
of equations above, one can instead change the
system as such:

W, Ay —I-I| [d?

A 0o 0 0| |dp
X 'Z, 0 I 0| |dY
X ' Zyr 0 0 I | \di*

Vi(xr) + AL — 21k — Zuk
c(zy)
_ A4
zi— X, ' (44)
Zuk — MJX,Jl]_

Adding the third and fourth equations to the first
one, the third and fourth blocks of coefficients of
the first equation will be eliminated.

Wi+, A, 00 df

Al o o0 [ d)
X, 'Zi, 0 10| |d}
X, 'Zyr 0 01| \di*

Vf(wk) + A{)\k — /.Lle_l]_ — /,L]X,Jl]_

_ c(xy)
2Lk — Mijll
Zuk — :u’]X'lill

(A5)

where X, = Xl_IZl,k + X;1Zu7k. Therefore, one
can now solve for d® and dp by solving the
following symmetric linear system:

[Wk + 3 Ak} (df) _
AT o | \dp
_ <Vf(wk) + Ag)‘k — ,qul_ll — ILLJX,;11>
c(xy)
(A6)

then use the value of df to find d;* and d}* using:

dit =~z + X' - X Zydf,
di* = —zup+ 1; X, ' 1 — X' Zy i df,

(AT7a)
(A7b)

A.2 Deflating the KKT system

If we define the RHS of Equation (A6) as:
T\ _ ,,.x"11_, v—1
Fz,\) = <Vf(zc) + AT c‘(fl 1—p; X, 1)

(A8)

Then the goal of the primal-dual optimizer then
becomes solving for F(x,A) = 0.

If we apply the deflation operator to the
entire F(x,A), we will obtain G(xz,A) =
M (xz; x1)F(x, ) = 0, whose Jacobian is:

V.G(x) =m(x; ©1)VF(x,\)+
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diag(F (2, A)1(Vam(z; 1)) (A9)

where Vym(a; x1) is the gradient vector of the
deflation function, 1 is a column vector of 1s and
diag(F(x)) is a diagonal matrix with diagonal
F(x). The Jacobian of this function wrt  is:
W+3X
] (A10)

where W, X and A are defined as Wy, 3, and Ay
in the last section. The top matrix is symmetric
because it is the Hessian matrix of the barrier objec-
tive function. However, Ay := Ve(zy)? in general
is not symmetric, and thus prevents the usage of
efficient linear algebra algorithms for symmetric
linear system.
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