
The new analog: A protocol for linking design and construction
intent with algorithmic planning for robotic assembly of

complex structures
Yijiang Huang

yijiangh@mit.edu

Massachusetts Institute of Technology

Cambridge, USA

Pok Yin Victor Leung

leung@arch.ethz.ch

ETH Zurich

Zurich, Switzerland

Caelan Garrett

caelan@csail.mit.edu

Massachusetts Institute of Technology

Cambridge, USA

Fabio Gramazio

gramazio@arch.ethz.ch

ETH Zurich

Zurich, Switzerland

Matthias Kohler

kohler@arch.ethz.ch

ETH Zurich

Zurich, Switzerland

Caitlin Mueller

caitlinm@mit.edu

Massachusetts Institute of Technology

Cambridge, USA

Figure 1: Image showing the final timber element being assembled in our case study. Three distributed clamps can be seen in

the background already attached to the structure by the robotic arm. The assembly process is modeled with our flowchart and

solved using our solver. Two linear and one free motion trajectory are used to bring the element from pickup to the clamps,

shown here as overlaid white curves.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SCF ’21, October 28–29, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9090-3/21/10.

https://doi.org/10.1145/3485114.3485122

ABSTRACT

Construction robotics are increasingly popular in the architectural

fabrication community due to their accuracy and flexibility. Be-

cause of their high degree of motion freedom, these tools are able

to assemble complex structures with irregular designs, which ad-

vances architectural aesthetics and structural performance. How-

ever, automated task and motion planning (TAMP) for a robot to

https://orcid.org/0000-0003-1820-2535
https://doi.org/10.1145/3485114.3485122

SCF ’21, October 28–29, 2021, Virtual Event, USA Yijiang Huang, Pok Yin Victor Leung, Caelan Garrett, Fabio Gramazio, Matthias Kohler, and Caitlin Mueller

assemble non-repetitive objects can be challenging due to (1) a non-

repetitive assembly pattern (2) the need for a continuous robotic

motion throughout a sequence of movement (3) a congested con-

struction scene and (4) occasional robot configuration constraints

due to taught positions. Recent work has already begun to address

these challenges for repetitive assembly processes, where the ro-

bot repeats a pattern of primitive behaviors (e.g. brick stacking or

spatial extrusion). Yet, there are many assembly processes that can

benefit from a non-repetitive pattern. For example, processes can

change tools on an element-by-element level to accommodate a

wider range of geometry.

Our work is motivated by the necessity of robotic modeling and

planning for a recently published timber assembly process which

utilizes distributed robotic clamps to press together interlocking

joints. In addition to pick-and-place operations, the robot needs

to move numerous tools within the construction scene, similar to

a tool-change operation. In order to facilitate an agile process for

architectural design, construction process design, and TAMP, we

introduce a flowchart-based specification language which allows

various designers to describe their design and construction intent

and knowledge. A compiler can then translate the assembly de-

scription, sequence, process flowchart, and robotic setup into a

plan skeleton. Additionally, we present a linear and a non-linear

solving algorithm that can solve the plan skeleton for a full se-

quence of robot motions. This algorithm can be customized to take

into account designer intuition, which can speed up the planning

process. We provide a comparison of the two algorithms using the

timber assembly process as our case study. We validate our results

by robotically executing and constructing a large-scale real-world

timber structure. Finally, we demonstrate the flexibility of our flow-

chart by showing how custom assembly actions are modeled in

our case study. We also demonstrate how other recently published

robotic assembly processes can be formulated using our flowcharts

to demonstrate generalizability.

CCS CONCEPTS

• Applied computing → Computer-aided design; Computer-

aided manufacturing.

KEYWORDS

Digital Fabrication, Robotic Assembly, Task and Motion Planning,

Spatial Timber Structure, Distributed Robotic Tools

ACM Reference Format:

Yijiang Huang, Pok Yin Victor Leung, Caelan Garrett, Fabio Gramazio,

Matthias Kohler, and Caitlin Mueller. 2021. The new analog: A protocol

for linking design and construction intent with algorithmic planning for

robotic assembly of complex structures . In Symposium on Computational
Fabrication (SCF ’21), October 28–29, 2021, Virtual Event, USA. ACM, New

York, NY, USA, 17 pages. https://doi.org/10.1145/3485114.3485122

1 INTRODUCTION

An emerging trend in architectural construction is to use industrial

robotic arms for discrete-element assembly tasks. This approach is

used for different material systems, such as timber, steel, masonry,

fiber, plastic, and can be applied on different scales, ranging any-

where from interior finishes to structural elements. These projects

take advantage of the precision and accuracy of robot to create

non-repetitive (i.e. irregular) assemblies that have complex architec-

tural expression or high structural efficiency, which are difficult to

assemble manually [Gramazio et al. 2014].

Non-Repetitive Robotic Assembly. Programming robots to build

non-repetitive assemblies requires a very different paradigm from

what is typically considered in industrial robotics, where the robot

performs repetitive tasks in a production line and programmers

can manually program and optimize a routine (often referred to as

teaching). In the context of creating non-repetitive architectural as-

semblies, it is desirable to have general-purpose and flexible robots

that can quickly adapt to evolving designs and construction con-

cepts. In a high variation assembly, where the assembly movements

do not have similar pick-and-place patterns or where the workpiece

varies substantially in geometry, the time required to manually pro-

gram or dry-run each individual motion can often be longer than

the execution process itself. Still, it is important to validate that

all the robotic motions are feasible during the design stage of an

architectural scheme.

In this paper we focus on the most difficult and crucial compo-

nent of validation: ensuring robot reachability and collision-free

motion. Unlike a Cartesian robot (such as a 3D printer or a laser

cutter), most robotic arms have six or more degrees of freedom

(DOF) and their movements cannot be easily validated without per-

forming full robotic motion planning for all of the involved steps. In

fact, validation planning is so detailed such that, upon completion,

the robotic execution trajectories are produced as a by-product.

This nontrivial process requires formulating the assembly process

as a planning scene, which defines the involved robots, tools, con-

straints and collision objects, and developing planning algorithms,

often referred to as planners.

Task and Motion Planning. Within the robotics planning litera-

ture, there are predominantly two types of planners: (1) task plan-
ners plan discrete decisions such as the order in which to perform

various types of robot and tool motions and (2)motion planners plan
a trajectory for a single robotic motion. Recently, researchers in

architecture-scale digital fabrication have started to use planners to

generate instructions for robotic assembly. However, the currently

available motion planning tools for the architectural community

(such as compas_fab [Rust et al. 2018], moveit! [Sucan and Chitta

2018]) are only able to plan trajectories connecting two configura-

tions. In order to apply these tools tomulti-step manipulation, which
involves several movements (e.g. picking up an object, transferring

it to a different location, and inserting the object into a hole), the

user needs to perform many motion planning calls, while ensuring

the overlapping configurations are the same.

In the robotics literature, each movement is referred to as an

action template [Huang et al. 2021]. An action template contains

three types of parameters, which can be assigned manually or

automatically: (1) discrete parameters (e.g. which object to pick

or place), (2) continuous parameters (such as poses and grasps of

the movable objects), and (3) continuous motion paths. Chaining

multiple action templates together results in a plan skeleton — a

high-level description of a multi-step manipulation process [Garrett

et al. 2021].

https://doi.org/10.1145/3485114.3485122

The new analog: linking design and construction intent with algorithmic robotic assembly planning SCF ’21, October 28–29, 2021, Virtual Event, USA

Repetitive vs Flexible Plan Skeletons. Robotic processes such as

material extrusion or pick-and-place assembly sometimes have

repetitive plan skeletons. For example, in spatial extrusion, the

robot alternates between two actions: (1) extrude and (2) transit.

For pick-and-place assembly, the robot repetitively performs four

actions in order: (1) transit, (2) pick, (3) transfer, and (4) place. In

these situations, both a construction sequence and corresponding

robotic motions can be planned together automatically [Huang

et al. 2021].

However, many architectural assembly processes require more

flexible plan skeletons. Some examples of this include when a tool-

change is needed to accommodate different workpiece geometry or

if the assembly actions change depending on a variable propriety

of the workpiece. In these cases, the designer traditionally must

manually create case-specific planning software in order to bridge

the gap between this custom behaviour and the standard motion

planners.

In our view, this approach wastes human time and expertise. Pro-

cess designers bring high-level intentionality and knowledge about

fabrication and assembly processes that should be communicated

to planning systems without the need for low-level or case-specific

programming. An alternative approach could take inspiration from

other complex planning problems in robotics. In general, planning

for non-repetitive plan skeletons that involve both high-level ac-

tions (e.g. tool-change) as well as low-level robotic motions (e.g.

linear and free-space movements) is a sub-class of task and motion

planning (TAMP) from the robotics planning literature [Garrett

et al. 2021]. While many algorithms have been developed by the

robotics community to automatically plan for both actions and mo-

tions, the formulation of such problems requires domain-specific

expert knowledge that can be unfamiliar to many users. We believe

this expertise gap will be closed by empowering designers and en-

gineers to formulate their problems using a protocol that bridges

between high-level intentions and low-level planning algorithms.

Such a formulation can be seen as a new digital version of the

traditional, analog architect-engineer-contractor conversations of
relevance suited for the new era of digital fabrication.

Contribution. This paper presents the formalization of general-

purpose robotic assembly planning with non-repetitive plan skele-

tons. Our method uses abstracted actions arranged in a flowchart

to enable designers to easily describe complex, non-repetitive as-

sembly processes. The other benefits include:

• The process description is decoupled from the implementa-

tion of automatic solvers and motion planners.

• The process description is fully parametric (e.g. geometry,

joints, neighbour relationships and number of elements).

Different architectural schemes can be evaluated without

reformulation.

• It establishes a protocol between architectural design, process
design and planning, allowing better separation of work and

promoting collaboration between different expertise.

• The formulation is compatible with non-sequential motion

planning, allowing difficult motions to be planned first. Pro-

cess designers can easily control the planning priority based

on experience and intuition, which can dramatically improve

planning efficiency.

• The outputted trajectories from motion planning can be

directly used for robotic execution.

We use a recently published spatial timber assembly process [Le-

ung et al. 2021] as a case study to demonstrate the benefit of the

proposed flexible planning framework. In particular, this assembly

process has multiple grippers and fastening tools, a non-repetitive

plan skeleton, and requires manipulation of long timber elements in

a dense, congested environment. This allows us, a team of architects

and engineers, to use the plan skeleton formulation as a protocol to

effectively collaborate and to perform this case study. The method

and planning results are validated by the real-world robotic con-

struction of a spatial frame structure (4.8 x 3.0m footprint, 3.4m

tall) comprised of 40 pieces of 100x100mm profile timber elements.

2 CHALLENGES AND RELATEDWORK

Early Work in Assembly and Manipulation Planning. Automatic

assembly of mechanical parts or structures is among the first few

envisioned applications of industrial robots [Ayres and Miller 1983].

Investigations into generating assembly sequences that allow hu-

mans or robots to assemble mechanical parts based on design CAD

files dates back to 1980s [De Fazio and Whitney 1987; De Mello

and Sanderson 1990; Wilson 1992]. This line of work focuses on

low-level constraints such as mutual blocking relationship during

assembly, but ignores the geometric constraints introduced by robot

manipulators.

Manipulation planning problems in which the goal is not just

move the robot without collision but also to operate on the objects

in the world have been addressed from the earliest days of mo-

tion planning to this day, for example [Alami et al. 1990; Garrett

et al. 2015; Hauser and Ng-Thow-Hing 2011; Krontiris and Bekris

2015; Lozano-Pérez 1981; Siméon et al. 2004; Stilman and Kuffner

2008]. However, the lack of open-source implementations of these

algorithms and a proper modeling interface to connect them with

practical design and construction problems makes their usage rare

in architectural digital fabrication projects.

Early Work in Architectural Robotics. A number of architectural

projects have used industrial robots to create bespoke spatial as-

semblies [Eversmann et al. 2017; Hack and Lauer 2014; Helm et al.

2015; Thoma et al. 2018]. However, many of these early works

adopt a trial-and-error method for planning the actions and robotic

motions, often by manually (1) assigning a fixed plan skeleton,

(2) guessing a construction sequence, (3) guessing robot target

configurations. Although existing software packages can support

these basic operations through performing point-wise kinemat-

ics checks [Braumann and Brell-Cokcan 2011; Schwartz 2012] and

configuration-to-configuration motion planning [Gandia et al. 2018;

Sucan and Chitta 2018], applying a strict ordering on the actions

and solving linearly for trajectories can lead to a "stuck" situation

in a dense, congested environment. For example, grasp poses or

configurations that are feasible in the earlier steps might lead to in-

feasible situations in the subsequent actions. This leads to a highly

inefficient solver that requires a lot of manual backtracking.

Sequence and Motion Planning. In assembly problems that have a

fixed plan skeleton, such as single-robot spatial extrusion and pick-

and-place assembly, the robot repetitively performs certain action

SCF ’21, October 28–29, 2021, Virtual Event, USA Yijiang Huang, Pok Yin Victor Leung, Caelan Garrett, Fabio Gramazio, Matthias Kohler, and Caitlin Mueller

Process
Starts No

Yes

Are there
more bricks to

assemble?

Process
Complete

PickBrickFromStorage

PlaceBrickToStructure

Process
Starts No

Yes

Are there
more struts

to print?

Process
Complete

Transit

LinearMoveAndExtrude

Figure 2: Plan skeleton for repetitive assembly processes: brick wall assembly (left) and 3D extrusion (right)

primitives in a fixed order (Fig. 2). The plan skeleton thus has a fixed

length and pattern, which removes any challenge of high-level ac-

tion planning. In these cases, the planning problems can be reduced

to Sequence And Motion Planning (SAMP) problems, where the

planner only needs to fill in the construction sequence, i.e. which

element to assemble at each step, and the robotic motions. Algo-

rithmic investigation of SAMP began in the robotic extrusion of bar

structures with arbitrary geometries and topologies. Early work

along this direction addressed sequence planning for a disembodied

end effector, ignoring the robot arm [Gelber et al. 2018; Huang et al.

2016; Wu et al. 2016; Yu et al. 2016]. One recent example is Choreo,

which plans both the assembly sequence and robotic motions for

extrusion processes [Huang et al. 2018]. However, Choreo separates

planning into separate sequence and transit phases, which can pre-

vent it from finding solutions to feasible problems in some cases.

Recent research has proposed scalable planning algorithms to solve

large SAMP problems effectively without the use of human guid-

ance [Garrett et al. 2020a; Huang et al. 2021]. However, it is hard to

generalize these specialized search algorithms to general assembly

domains without a pre-assigned, fixed plan skeleton. This limits

the problems that these algorithms can address to a small category

that is overly simplified, compared to more realistic construction

processes.

Task and Motion Planning. Task and motion planning (TAMP)

bridges both symbolic reasoning of actions to achieve goals and geo-

metric reasoning in search of a collision-free robotic motions [Gar-

rett et al. 2021]. Research in this area seeks to combine discrete

task planning from the artificial intelligence (AI) community [Ghal-

lab et al. 2004] and continuous motion planning from the robotic

community [LaValle 2006] to allow reasoning on both levels si-

multaneously [Garrett et al. 2018; Srivastava et al. 2014; Toussaint

2015]. In order to solve a broad class of TAMP problems, Garrett

et al. [2020b] proposed PDDLStream, a modular, domain-agnostic

planning language for formulating robotic problems with symbolic

task definitions. By using logical predicates to describe system

states and symbolic operators to represent actions, PDDLStream

and its solvers can automatically reason about the order of actions,

while also planning valid robotic motions. However, PDDLStream

modeling requires the users to formulate their planning problem

in the format of symbolic states and actions, which is rarely used

in the architectural community. In contrast, working directly with

representations of high-level assembly and construction actions is

more relevant to those working in architectural robotics. The miss-

ing gap is not one of solvers, but one of the challenge of problem

formulation.

This paper aims to help bridge the gap by demonstrating the

TAMP-based plan skeleton formulation process with a realistic and

complex case study, bringing robotic construction closer to the

problem encoding used by the TAMP solvers, and thereby enabling

flexible, efficient planning for a wide range of complex and realistic

structures.

3 FORMULATING A CONSTRUCTION

PROCESS INTO A PLAN SKELETON:

FLOWCHART INTERFACE

In order to simplify the formulation of an assembly process for a

wider user group, this paper proposes the use of a two-step con-

struction planning process, by first arranging high-level actions in
a flowchart and then breaking down the actions into lower-level

movements. This flowchart method is particularly intuitive for a

designer to use and the result can be compiled automatically into

plan skeletons and subsequently used to plan motions for the entire

assembly process. An overview of the design to execution workflow

is shown in Fig. 3.

3.1 High-level Actions

The actions in our formulation are user-defined, high-level abstrac-

tions of robotic manipulations skills. Each action consists of one or

more atomic movements that can involve a combination of robots

and tools. For example, the brick stacking process in Fig. 2 con-

sists of two high-level actions: PickBrickFromStorage and Place-

BrickToStructure. The two actions can be repeated to assemble

as many elements as required for a given assembly sequence. Dur-

ing each iteration, only the parameters specific to that step need to

be changed, for example, the location to pickup and place a specific

brick.

In order to illustrate how actions play an important role in more

complex scenarios, we will extend our discussions based on a prior

spatial timber assembly process [Leung et al. 2021] (Fig. 1). This pro-

cess utilized a group of distributed robotic clamps and grippers as

well as a single 6-DOF industrial robotic arm inversely-mounted on

a 3-DOF gantry. The process is designed to automatically assemble

timber structures consisting of linear timber elements connected

with carpentry lap joints. While in the previous publication Leung

The new analog: linking design and construction intent with algorithmic robotic assembly planning SCF ’21, October 28–29, 2021, Virtual Event, USA

Plan Skeleton
Robot / Tools /

Build Space DescriptionAssembly Sequence

Assembly Description

1

2

3
4

Process Description
Formulation (Flowchart)

Process
Starts

Are there
more elements to

assemble?
Process

Complete

No

Actions

Yes

Compiler

Backtracking
Sampling Solver

IK Solver Motion
Planner

Execution Scipt
(List of Movements

with Trajectory)

Robot Controller

Movement 1

State 1

State 2

State 3

State N

Initial
State

Movement 2

Movement 3

Movement N-1

Architectural Design Process Design Design Validation / Task and Motion Planning Robotic Execution

.urdf

.obj

Figure 3: Generalized design, validation, and execution workflow for robotic assembly processes envisioned by the authors.

The "Design Validation / TAMP" portion is highly automatic. Images are symbolic references to our case study.

et al. [2021] only used the robot for picking and placing the ele-

ments and had human operators to place the clamps, the case study

in this paper presents an updated version of the process, tested

physically, by using the robot to automatically perform all the ac-

tions. Of particular interest for TAMP is that a variable number of

robotic clamps are used during each step to apply large assembly

forces while the robotic arm manipulates and supports the weight

of a timber element in space.

Conditional Statements. Although a different number of clamps

are needed for each step, the flowchart method can still be applied

by adding extra conditional statements to create inner loops within

each step. In our case study, an iterative loop is added (Fig. 4.b) for

the robotic arm to perform as many PickClampFromStorage and

PlaceClampToStructure actions as necessary. Similarly, another

conditional loop is added (Fig. 4.c) for the robotic arm to detach

all the clamps after they have been used. On the other hand, con-

ditional statements can also be used in the flowchart to trigger

different actions based on specific properties of that step. In our

case study, a conditional statement (Fig. 4.d) allow for automatically

deciding whether to perform PlaceElementWithoutClamps or

PlaceElementWithClamps depending on whether clamps are

used for that element.

The use of a flowchart allows a process designer to focus on

arranging high-level actions and defer their implementation details

to a later stage. Combined with the use of conditional statements,

the high-level actions reduce unnecessary specificity during process

design and reduce code redundancy when later implemented. As a

counterexample, it would be possible to list out all possible clamp

and no-clamp scenarios in our case study as sequential scripts.

However, this implementation would be very hard to maintain,

reuse, and alter.

3.2 Low-level Movements

The second step after creating the flowchart is to break down each

action into a sequence of low-level movements. The movements

refer to the primitive skills that a robotic system or the tools can

perform. They should be formulated to be highly atomic for maxi-

mum modularity and reusability across different actions. The list

below shows three common types of movements. In practice, cus-

tom movements can be formulated for a specific robotic setup (see

Section 6).

• Robotic Movement - actions of the robotic system that re-

quires a motion planner for computing trajectory. During a

robotic movement, tools and workpieces that are attached

to the robot move together with the robot. It is possible to

impose additional constraints on the robot, such as constrain-

ing the end effector to follow a linear path in 3D workspace

(linear robotic movement). If no additional constraints are

imposed, the movement is referred to as a free robotic move-

ment. Section 4 provides more information on motion con-

straints.

• Tool Movement - discrete actions executed by tools that

are either stationary or attached to the robotic system, such

as opening or closing a gripper, locking or unlocking a tool

changer, or turning an electric spindle on or off. These types

of movements do not require computing a trajectory for

the robot but may change the shape of a tool or change the

attachment status of a workpiece or a tool (whether they are

attached to the robot).

• Manual Movement - any other type of movements that

are not executed automatically, such as a human manually

fixing elements, making structural connections, or inspect-

ing the structure. If these movements change the state of

the objects in the scene, it is important to update the corre-

sponding planning scene for the motion planner. Instead of

SCF ’21, October 28–29, 2021, Virtual Event, USA Yijiang Huang, Pok Yin Victor Leung, Caelan Garrett, Fabio Gramazio, Matthias Kohler, and Caitlin Mueller

No

Yes

All Clamps
Placed?

Process
Starts

Process
Complete

No

Yes

All Clamps
Retrieved?

Yes

No

PickClampFromStorage

PlaceClampToStructure

PickGripperFromStorage

PickElementFromStorage

i = 0

Increment i

i = Current Element To Assemble
N = Total Number of Elements

Yes

No
i < N

PlaceElementWithoutClamps PlaceElementWithClamps

PlaceGripperToStorage

PickClampFromStructure

PlaceClampToStorage
Number of

Clamps > 0?

(b)

(a)

(c)

(d)

Figure 4: The flexible planning skeleton of the case study expressed as a flowchart, showing loops (a, b, c in orange) and

conditional statements (d in red) that are evaluated for each element.

Pl
ac

eE
le

m
en

tW
ith

C
la

m
ps Robotic Arm transfer Element

to Assembly Approach Point
using Free Movement

Robotic Arm move Element
inside Clamp Jaw

using Linear Movement

Clamp(s) retract jaw
to starting position

using Clamp Rapid Move

Robotic Arm moves towards
assembled position while

Clamp(s) retract jaw
to assembled position using
Synchronized Robot and

Clamp Movement

Gripper release element
using Robot Digital Output

Robotic Arm retract
from element

using Linear Movement

(a)

(b)

(c)

(d)

(e)

(f)

a c

e

b

d f

Figure 5: Movement decomposition of action PlaceElementWithClamps in our case study. Please refer to the legend of Fig 6

for the color coding of movements. Drawings on the right (a - f) shows an example of the planning scene after eachMovement.

Red arrows indicatemovements caused by the robotic arm, blue arrows indicate tool movements. Note that step (d) is a custom

movement that requires robot arm and clamps to move synchronously.

executing machine code, Manual Movements simply trigger

an Operator Stop and wait for human confirmation.

The decomposition of an action into movements require a level

of granularity that is determined by the motion planners at hand,

The new analog: linking design and construction intent with algorithmic robotic assembly planning SCF ’21, October 28–29, 2021, Virtual Event, USA

specifically, the motion constraint (see Section 3.4). For example,

we cannot have a free motion and a linear motion combined as a

single movement because they require two different planners to

solve them. On the other hand, a free motion can be subdivided

into several smaller chuck of concatenated free motions.

Fig. 5 shows the decomposition of one of the Actions (PlaceEle-

mentWithClamps) used in our case study. Note that a custom-

formulated "Synchronized Robot & Clamp Movement" is used to

model the synchronized movement unique to our case study. This

movement requires a corresponding planner (in our case, similar

to a linear motion planner) for motion planning.

3.3 Compiling a Flowchart Into a Plan Skeleton

The final step before performing motion planning is to compile the

flowchart into a plan skeleton. A plan skeleton is a sequential list of

movements (Fig. 6), each with an associated packet of information

passed to the motion planner. The compiler is a piece of software

that is created by the process designer to combine assembly descrip-

tion, assembly sequence, process description (flowchart, actions

and movements) with a specific robotic setup. A typical compiling

process involves the following tasks:

(1) Gather the assembly sequence: Depending on the type

of assembly, the sequence can be manually specified (our

case study) or automatically computed from the assembly

description using heuristics (e.g. a brick wall).

(2) Gather the sequence for other loops within each con-

struction step: For example, in our case study, we have two

additional inner loops within each construction step regard-

ing the sequence of attaching and detaching clamps. These

are automatically assigned based on available tools.

(3) Evaluate the conditional statements: All the conditional

statements in the flow chart can be evaluated from the as-

sembly sequence and properties in the assembly description.

The flowchart will therefore turn into a linear sequential list

of Actions.

(4) Gather action-specific parameters: Actions may contain

parameters that are computed from the assembly description,

such as the target frame for the robot or tool to reach or the

grasp pose. These parameters can either be constant (for

example, always holding a brick on its center from its top

face) or variable (for example, in our case study, holding a

timber element along various locations and directions along

its longitude axis).

(5) Decompose actions intomovements and gathermovement-

specific parameters - Movements may contain parameters

that are copied from its parent action (e.g. target frame, tool

id) or computed directly from the assembly description (e.g.

allowed collision pairs between the workpiece and its to-be-

connected neighbors, see Section 3.4).

3.4 Planning constraint for motion planners

The primary purpose of compiling a high-level flowchart into a

plan skeleton is to convert a multi-stepped planning problem into

atomic motion planning tasks that an off-the-shelf motion planner

(MP) can individually solve. In general, motion planners search for

a robotic trajectory within a feasible configuration space (described

in joint positions) defined by constraints.

• Joint Limits - In general, an MP will stay within the joint

limits of the robotic system. This limit is typically non-

changing.

• Robot Collision - The MP will prevent the robotic system

(including any attached tool and grasped workpieces) from

colliding with itself or the stationary environment. Extra

allowable collision pairs can also be specified for the MP to

ignore expected contacts. Note that the environment and the

expected contacts may change from step to step due to the

progression of the assembly task.

• Motion Constraint - Constraints can be specified by the

process designer to achieve a more controlled motion. For

example, a linear movement constraint requires the tool

tip to stay on a linear path in the workspace. In our case

study, only free and linear movements are used. However,

other constraints such as twisting and rotational motion

constraints exist [Berenson et al. 2011].

• Targets - The MP requires start and end targets to be speci-

fied as input. These targets can be defined as a loosely con-

strained tool pose (also called a tool frame) or a prescribed

robot configuration (joint position). Typically, a tool pose

is specified and the MP can freely sample a valid robot con-

figuration by internally calling an inverse kinematics (IK)

sampler. A fixed, rigid robot configuration can be used in

cases where a specific configuration is preferred by the de-

signer, such as tool change positions and workpiece pickup

positions
1
.

Fixed Constraint Within One Movement. By convention of most

existing MPs, these planning constraints are fixed within one plan-

ning call. Our movement formulation thus also follows this conven-

tion and will not allow changing constraints within one movement.

However, many assembly processes (including our case study) re-

quire changing the allowable collision pairs, such as during a tool

change or when grasping a workpiece. In order to overcome the

limitation, it is possible to add a linear movement shortly before

making contact (e.g Fig 5.b) and shortly after breaking contact (e.g

Fig 5.f) to specify different allowable collision pairs. Moreover, the

linear motion constraint can be beneficial for creating a predictable

trajectory for such operations.

4 PLAN SKELETON SOLVER

A single motion planning task can be solved using our movement

formulation by passing the robot description, tools descriptions,

object geometries (meshes), and planning constraints to a corre-

sponding MP (based on the required motion constraint). However,

a more involved solver is needed to solve all the sequentially cou-

pled movements in a plan skeleton. Specifically, the "intersection"

between two adjacent movements trajectory must share a com-

mon robot configuration to ensure joint-space continuity during

1
The exact positions of these targets often depends on the physical setup and are often

acquired by manually jogging the robotic system to alignment and then reading out

the robotic configuration to achieve maximum repeatability. This technique is used

throughout our case study for all the tool storage positions and the element pickup

positions.

SCF ’21, October 28–29, 2021, Virtual Event, USA Yijiang Huang, Pok Yin Victor Leung, Caelan Garrett, Fabio Gramazio, Matthias Kohler, and Caitlin Mueller
Pi

ck
C

la
m

pF
ro

m
St

or
ag

e

i < N

All Clamps
Placed?

FM

TM

LM

LM

Pl
ac

eC
la

m
pT

oS
tr

uc
tu

re

FM

TM

LM

LM

LM

Pi
ck

C
la

m
pF

ro
m

St
or

ag
e

All Clamps
Placed?

FM

TM

LM

LM

Pl
ac

eC
la

m
pT

oS
tr

uc
tu

re

FM

TM

LM

LM

LM

Yes

No No Yes

All Clamps
Placed?

Pi
ck

G
rip

pe
rF

ro
m

St
or

ag
e

FM

LM

LM

Pi
ck

El
em

en
tF

ro
m

St
or

ag
e

FM

TM

LM

LM

Number of
Clamps > 0?

Yes

Pl
ac

eE
le

m
en

tW
ith

C
la

m
ps FM

TM

LM

SM

TM

LM

Pl
ac

eG
rip

pe
rT

oS
to

ra
ge FM

LM

LM

No

All Clamps
Retrived?

Pi
ck

C
la

m
pF

ro
m

St
ru

ct
ur

e

FM

TM

LM

Pl
ac

eC
la

m
pT

oS
to

ra
ge FM

TM

LM

LM

No

All Clamps
Retrived?

Pl
ac

eC
la

m
pT

oS
to

ra
ge FM

TM

LM

LM

All Clamps
Retrived?

Yes

Increment i

i < N

a

c

d

f

g h

e

LM LM

FM Free Robotic Movement

Linear Robotic MovementLM TM SM Synchronized Robot and Clamp Movement (Linear)Tool Movement

MM

MM Manual Movement

LM

TM

CC Controller Compensation (No Physical Movement)

CC

Pi
ck

C
la

m
pF

ro
m

St
ru

ct
ur

e

FM

TM

LM

LM

TM

CC

TM

b

TM

TM TM

TM

TM

TM TM

CC CC

LMLM

Next
Element

a b

c d

e f

g h

Figure 6: Diagrammatic output of the compiler: a full plan skeleton for one construction step (5
th

element in the sequence) in

our case study, showing the 69 Movements created from 12 Actions. Images (a-h) on the right shows the state of the planning

scene at selected moments. Red arrows indicate the general movement of the active tool before the state.

execution. Therefore, a solver needs to pass the ending robot con-

figuration of the previous motion as the starting target for the next

MP task.

4.1 Linear Sequential Solver

A simple method of solving all the movements in a plan skeleton is

to solve individual movements in a fixed linear sequence. Starting

from the first movement, a trajectory is planned by calling the cor-

respondingMP. The robot configuration at the end of this trajectory

is propagated as the starting target constraint for planning the next

movement (Fig. 7). This is repeated for all the robotic movements

(skipping over non-robotic movements) until all the movements

are planned.

Due to the stochastic nature of MPs and the underlying IK sam-

plers, a planning request may fail to find a solution within a rea-

sonable time (i.e. timeout). In this case, the cause of the failure may

lie in the planning result of previous movements. Specifically, the

randomly sampled ending robotic configuration of the previous

movement can create an unfavorable starting constraint for the

current movement. Therefore it is necessary for the solver to adopt

a backtracking or restarting mechanism for rewinding the planned

movements and allow for another random attempt.

4.2 Nonlinear Solver

Unfortunately, the seemingly intuitive sequential planning strategy

is highly inefficient at solving plan skeletons with scattered fixed

The new analog: linking design and construction intent with algorithmic robotic assembly planning SCF ’21, October 28–29, 2021, Virtual Event, USA

Movement i-1

Movement i+1

State i-1

State i+1

Trajectory i-1

IK
SamplerO

rd
er

 o
f

M
ov

em
en

ts
 a

nd
 S

ta
te

s Scene States Plan Skeleton Resolved Robot Trajectory
and Configurations

Order of Movements and State
in planning skeleton

Data Flow during Motion Planning

Frame & Attachment Status
(Tools / Workpieces)

Movement i

State i

Trajectory i

Motion
Planner

Configuration Start

Movement Type
(Linear / Free)

Allowable Collision Pairs

Target Frame / Config

Static Collision Objects

Input data for planning one movement

Trajectory i+1

Robot Config i-1

Robot Config i

Robot Config i-1

Robot Config i

Robot Config i-2

Figure 7: Diagram showing data flow for planning one movement within a plan skeleton. Note that the robotic configuration

of the planning result is used for planning the next movement, this constraint ensures motion continuity.

robot configurations (e.g. for tool change and workpiece pickup)

and with scattered difficult movements (e.g. narrow passages when

manipulating long timber elements in congested environment). The

backtracking or restarting method in a sequential solver will result

in a lot of wasted effort solving the easier portion of the plan, only

to be backtracked by a difficult movement.

One example of narrow passage manipulation can be seen in

Fig 8. It shows two possible robot configurations after the robotic

arm brings a clamp to the joint using free movement. However, one

of them cannot proceed further due to an imminent collision. The

second described difficulty, related to a fixed robotic configuration,

can be seen in the tool changes in our case study. There, a free

movement is used to bring the robot close to the tool storage and

then a short linear movement is used to bring the robot to a prede-

termined fixed configuration. When solved linearly, the probability

of the free movement to sample a configuration close enough to

the fixed configuration is too low for the linear MP to bridge. In

our case study, the success rate of solving the movements of a sin-

gle element using a linear solver is practically zero (see results in

Section 5).

In order to overcome this problem, we introduce a non-linear

solving method (Fig. 9.a) based on a priority heuristics that describe

the "difficulty" of a movement. In general, movements with more

constraints are more difficult to plan, since more constraints leads

to smaller feasible robot configuration space [Kingston et al. 2018].

Similarly, movements with more, larger attached objects or collision

objects have smaller collision-free robot configuration space, thus

harder to plan. These heuristics allows the solver to plan difficult

movements first, thereby failing quickly before spending time on

the other movements. The starting robotic state constraint propaga-

tion works essentially the same way as the sequential planner, but

it propagates both forward and backwards to neighboring move-

ments. This intuition essentially allows the backtracking algorithm

to eliminate unsuitable configuration candidates earlier and can

substantially improve success rates.

Case-Study Specific Priority Computation. The priority heuristics

used in our case study can be seen in Fig.9b. We first use the general

rule of thumb to classify movements that have more constraints

(motion constraints and start configuration constraints) to be more

difficult. In addition, the process designer can assign a priority flag

(a Boolean value) to specific movements of an action to denote

higher priority. The inclusion of designer intuition into our heuris-

tics allows a process designer to help the solver making informed

decisions. We also found that it is natural for a process designer

to speculate which movements are the most constrained and thus

most difficult to plan a motion for.

5 SOFTWARE IMPLEMENTATION AND

RUNTIME RESULTS

In order to validate our method and to generate trajectories for

executing the case study, we implement our algorithms and solvers

using Pybullet [Coumans and Bai 2016] as a simulation platform,

which takes care of collision checking, forward kinematics, and

SCF ’21, October 28–29, 2021, Virtual Event, USA Yijiang Huang, Pok Yin Victor Leung, Caelan Garrett, Fabio Gramazio, Matthias Kohler, and Caitlin Mueller

imminent
colliosion

a b

Figure 8: Comparison between a good and bad state after the robotic arm transfers a clamp to the structure (a free movement),

before the final approaching movement (a linear movement). Due to the stochastic nature of the IK sampler, any good or

bad scenarios are equally likely to happen. (a): The robotic arm body is sandwiched between the structure after its previous

movement (red arrow). The linear MP for the next movement cannot find a collision free path. (b): The robotic arm holds the

clamp in a different configuration that is possible for next movement (green arrow).

visualization during motion planning. Robot and tool description

are based on Unified Robot Description Format (URDF) and meshes

(.obj and .stl). Assembly description, robotic configuration and ge-

ometry classes are extended from the compas framework [Van

Mele and many others 2021]. Flowchart, action-movement decom-

position and compiler are implemented by the authors in Python,

without the graphical visualization or user interface described in

Fig. 4 or Fig. 6. Timber element geometry and robotic tool geometry

are parsed from objects modeled in Rhinoceros 6 [McNeel et al.

2010]. Assembly sequence and assembly directions for individual

element are specified manually using an interactive script within

the Rhinoceros 6 canvas.

Our free motion planner implements the RRT-connect algo-

rithm [Kuffner Jr. and LaValle 2000]. Our linear motion planner

implements Randomized Gradient Descent [Stilman 2010; Yao and

Gupta 2007], with Trac-IK as its gradient-based IK solver [Beeson

and Ames 2015]. The three extra DOF of our robots is handled by

first sampling the gantry position within a sphere near the target

end-effector pose, and then using IKFast [Diankov and Kuffner

2008] (an analytical IK solver) to obtain all the configurations for

the 6-DOF robot arm. Both MPs comply with the standard inter-

faces described in the compas_fab [Rust et al. 2018] API, the robotic

fabrication package extending the compas framework.

To compare the effect of linear and nonlinear solving, we perform

40 random trials on solving a sequence of movements for a partic-

ular timber element (5
th

in the sequence, the same construction

step as shown in Fig. 6). For the linear sequential solver, we include

forward (plan from the first movement to the end) and backward

order (plan from the last movement to the start). The results shows

that when fixed robot configuration constraints are included (for

tool-change), the linear sequential solvers cannot solve the problem

at all (Fig. 10.a.1). In contrast, the nonlinear planner can solve the

problem with a 32.4% success rate. Fig. 10.a.2 shows the average

time of successful and failed trials. In addition to the rollout experi-

ment above, we perform 10 random trials of running the planner

until success or timeout (1800 seconds) with automatic random

restarts. Fig. 10.a.3 shows the planner’s average solving time. The

dots represents the individual data from the random trials.

To further compare the solvers, we remove the robot configura-

tion constraints and perform the same experiments as above. The

result (Fig. 10.b.1) shows that the nonlinear planner still have higher

success rate (27.0%) than the linear sequential solvers (16.2%, 10.8%)

. The nonlinear solver also has a lower averaged planning time

until a solution is found (Fig. 10.b.3). Finally, comparing Fig. 10.a.3

and Fig. 10.b.3, it is interesting to see that the nonlinear planner

solves the problem faster when robot configuration constraints

are included. The fixed configurations provide useful hints for the

solver because these configurations are conjured manually to be in

a ’non-stretched’ position and tested to be collision free.

Fig. 11 shows the planning time for all the elements along the

construction sequence using the nonlinear solver. The variation in

planning time roughly corresponds to the difficulty of planning in

The new analog: linking design and construction intent with algorithmic robotic assembly planning SCF ’21, October 28–29, 2021, Virtual Event, USA

EvalPriority(Movement)

Subroutine
Starts

No (Free Move)

Yes (Linear)Movement
Constraint

Yes

No

Has
Priority

Flag

Return
Priority

4

Return
Priority

1

Yes

No

Has
Start / end

Configuration
Constraint

Return
Priority

0

Return
Priority

3

Yes

No

Has
Start / end

Configuration
Constraint

Return
Priority

2

Planning
Routine
Starts

No Yes

Any
EvalPriority(Movement)

>= current_priority?

Set current_priority = max(priority)

No

current_priorty - = 1 Plan one movement where
EvalPriority(Movement)

>= current_priority

Planning
Routine

Complete

Yes

current_priorty <
min(priority)?

Perform Robot Config'
Constraint Propagation for

Non-robotic Movements

a b

Figure 9: a: Nonlinear algorithm for solving plan skeleton based on a priority heuristics. b: Movement priority heuristics used

in our case study, higher scores are considered more difficult and are planned earlier.

different construction steps. A timelapse video of the real-world

construction experiments can be found in the supplementary mate-

rial.

6 EXTENDING OUR FORMULATION FOR

PRACTICAL ISSUES IN CONSTRUCTION

The following sections aim to show the compatibility of our process

formulation method in coping with various practical situations

that arise in the presented case study. Beyond the case study, our

formulation method can be further applied to other architectural

assembly scenarios. More examples can be found in Section A of

the Appendix.

6.1 Inclusion of Temporary Scaffolding

Certain assembly processes require the addition of scaffolding in

the middle of the process to temporarily support the structure.

Using our formulation, both robotic and manual manipulation of

scaffolding can be easily incorporated into the Action Flowchart

(Fig. 12). It can also be used to remove workpieces. This allows all

of the collision objects in the scene to be correctly modeled and

avoids unexpected collisions during execution.

During the construction of our case study, we used manual car-

pentry clamps and aluminum profiles for temporary structural sup-

port. We initially assumed that their geometries were small enough

to not cause collisions and therefore did not model them. However,

collisions happened multiple times, causing substantial disruption

to the process and proving that temporary scaffold modeling is

necessary.

6.2 Executing Paths with Controlled Collision

Many different industrial robotic arms now support compliant

movement modes that assist alignment or provide contact forces.

Depending on the manufacturer, performing such commands may

require parameter values such as SoftDirections and PayloadInfor-

mation for each motion segment. Using our flowchart formulation

method, we programmed these parameters as optional parameters

in the corresponding robotic movements for execution with our

ABB controller. The one-to-one relationship between the low-level

movement formulation and the execution code allows parameters

to be passed seamlessly from the designer to the machine during

execution.

6.3 Online Visual Alignment

One of the actions in our case study requires the robotic arm to

dock with and detach a clamp from the structure. This is a challeng-

ing movement as the clamp may have moved during the clamping

process and deviate from the programmed position. By adding a

camera at the robot flange next to the tool changer, we are able

to detect the misalignment based on a captured image. Because

the correction amount is small, we implemented it as a Cartesian

SCF ’21, October 28–29, 2021, Virtual Event, USA Yijiang Huang, Pok Yin Victor Leung, Caelan Garrett, Fabio Gramazio, Matthias Kohler, and Caitlin Mueller

(1) (2) (3)

(a) Fixed robot configuration constraints (used in tool changing) are included.

(1) (2) (3)

(b) Fixed robot configuration constraints (used in tool changing) are ignored.

Figure 10: Comparison between linear and nonlinear solver for solving 45 robotic movement for the 5
th

timber element.

Figure 11: Computing time for nonlinear solver to solve movements for each of the 40 timber elements used in our case study.

Element index indicates its place in the construction sequence.

offset instead of re-planning the motion. In our PickClampFrom-

Structure action formulation (Fig. 13), we have added two special

movements: AcqireDockingOffset to direct the camera to ac-

quire the correction image, and apply the offset for subsequent

movements and CancelDockingOffset to remove it after the

dock and detach procedure is completed.

7 CONCLUSIONS AND FUTUREWORK

This paper contributes a new protocol for architectural and con-

struction process designers to communicate intent and knowledge

to robotic task and motion planners. This protocol allows for com-

plex, realistic construction robotics applications with non-repetitive

The new analog: linking design and construction intent with algorithmic robotic assembly planning SCF ’21, October 28–29, 2021, Virtual Event, USA

Process
Starts

Process
Completei = 0

Increment i

Yes

No
i < N

PickElement

PlaceElement

No

Yes
Is Structure

Stable?

AddScaffoldElement

Yes

No

Is any
scaffold

redundant?

RemoveScaffoldElement

Figure 12: Addition of AddScaffoldElement and Re-

moveScaffoldElement (highlighted in bold) to a generic

pick and place flowchart. This is compatible with our case

study flowchart in Fig. 4.

assemblies to make use of efficient, state-of-the-art planning meth-

ods that offload low-level efforts from human designers. Themethod

is demonstrated computationally and physically on a real-world

case study. Key contributions and directions for future work are

given briefly below:

Interface for designers. The computational fabrication field does

not yet have a good interface to perform task and motion planning

for general-purpose robotic assembly. This paper has presented a

new interface concept that will allow designers to formulate and

solve planning problems even with non-repetitive action patterns

easily. The proposed flowchart-based visualization allows designers

to formulate their problems visually using computational logic that

understandable both by humans and computers. At themoment, our

work did not implement a graphical user interface for manipulating

the flowchart. Therefore, designers have to be well versed with

Python code to adjust the flowchart logic.

However, we speculate an interactive icon-dragging interface

that can bemodeled after the visual programming platformGrasshop-

per [McNeel et al. 2010] . The major input form the architectural

designer will be: (1) the geometry of the parts to be assembled (2)

the position of the parts after they are assembled. (3) assembly se-

quence and assembly direction (can potentially be automatic). The

process designer should be able to input (1) digital representations

of available robots and tools, including their geometry, kinematics,

actions and capability. (2) Assembly flowchart. In our demonstra-

tion, the architectural designer and the process designer role is

filled by two person. However, future work can study whether this

separation is useful or necessary. At the moment, the compiler is

created specifically for our choice of tools (clamps and gripper)

and parts (wood elements with half-lap joints. Future work should

study how this can be generalized such that changing tools or part

definition does not require adjustments to the compiler.

Extensibility. One key advantage of our formulation is its flexi-

bility. In addition to the timber case study, the examples provided

in the appendix demonstrate its versatility on a range of robotic

construction problems. However, for repetitive assembly problems,

our formulation only provides a generalized description framework

but does not offer additional computational benefits (see Sequence

and Motion Planning in Section 2). In future work, the method

can be adapted to work on multi-robot, multi-element planning

using the plan skeleton formulation. Our method is compatible with

asynchronous multi-robotic movements (multiple robot agents op-

erating at the same time), mobile robotic movements (e.g. robots

with a nonholonomic mobile base [Dörfler et al. 2016]), or even

non-discrete robotic movements (e.g. 3D printing [Mitropoulou

et al. 2020]), as long as specialized motion planners are provided.

For us, the creation of these planners falls onto the domain expert

in planning.

Towards full TAMP. Another compelling next step is to open

up the parameters that are set by the designers when compiling

a flowchart into a plan skeleton (Section 3.3). In this work, the

construction sequence and the grasp pose are provided by the

architect, using their intuition. But these values can be filled in by a

automatic planning algorithm as well, which needs the planner to

solve for both symbolic parameters (e.g. the construction sequence)

as well as geometric parameters (e.g. grasp poses, robot trajectories).

Finally, our flowchart-based formulation is designed for offline,

pre-planning purposes and currently do not support change of de-

sign after the fabrication has started or adaptive online re-planning

beyond a complete re-computation. An interesting future direction

is to investigate how to dynamically re-plan given incremental

changes of design or certain scene observations.

As construction robotics advances from boutique examples to

real-world deployment, the thoughtful combination of automation

and human expertise becomes increasingly important. The methods

presented in this paper represent a key step towards this future.

REFERENCES

Rachid Alami, Thierry Siméon, and Jean-Paul Laumond. 1990. A geometrical approach

to planning manipulation tasks. The case of discrete placements and grasps. In

International Symposium of Robotic Research (ISRR).
Robert U. Ayres and Steven MMiller. 1983. Robotics, applications and social implications.

Ballinger Pub. Co., Cambridge, Mass.

Patrick Beeson and Barrett Ames. 2015. TRAC-IK: An open-source library for im-

proved solving of generic inverse kinematics. In 2015 IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids). IEEE, 928–935.

Dmitry Berenson, Siddhartha Srinivasa, and James Kuffner. 2011. Task space regions: A

framework for pose-constrained manipulation planning. The International Journal
of Robotics Research 30, 12 (2011), 1435–1460.

Johannes Braumann and Sigrid Brell-Cokcan. 2011. Parametric robot control: integrated

CAD/CAM for architectural design. In Proceedings of the 31st Annual Conference of
the Association for Computer Aided Design in Architecture (ACADIA).

Erwin Coumans and Yunfei Bai. 2016. PyBullet, a Pythonmodule for physics simulation

for games, robotics and machine learning. \url{http://pybullet.org}.

Thomas De Fazio and Daniel Whitney. 1987. Simplified generation of all mechanical

assembly sequences. IEEE Journal on Robotics and Automation 3, 6 (1987), 640–658.

L S Homem De Mello and Arthur C Sanderson. 1990. AND/OR graph representation of

assembly plans. IEEE Transactions on robotics and automation 6, 2 (1990), 188–199.

Rosen Diankov and James Kuffner. 2008. OpenRAVE: A Planning Architecture
for Autonomous Robotics. Technical Report CMU-RI-TR-08-34. Robotics In-

stitute, Carnegie Mellon University. https://pdfs.semanticscholar.org/c28d/

3dc33b629916a306cc58cbff05dcd632d42d.pdf

Kathrin Dörfler, Timothy Sandy, Markus Giftthaler, Fabio Gramazio, Matthias Kohler,

and Jonas Buchli. 2016. Mobile robotic brickwork. In Robotic Fabrication in Archi-
tecture, Art and Design 2016. Springer, 204–217.

Rebeca Duque Estrada, Fabian Kannenberg, Hans Jakob Wagner, Maria Yablonina,

and Achim Menges. 2020. Spatial winding: cooperative heterogeneous multi-robot

system for fibrous structures. Construction Robotics 4, 3 (2020), 205–215.

https://pdfs.semanticscholar.org/c28d/3dc33b629916a306cc58cbff05dcd632d42d.pdf
https://pdfs.semanticscholar.org/c28d/3dc33b629916a306cc58cbff05dcd632d42d.pdf

SCF ’21, October 28–29, 2021, Virtual Event, USA Yijiang Huang, Pok Yin Victor Leung, Caelan Garrett, Fabio Gramazio, Matthias Kohler, and Caitlin Mueller
Pi

ck
C

la
m

pF
ro

m
St

ru
ct

ur
e Robotic Arm transit

to Tool Position on Structure
using Free Movement

Robotic Arm
approach Tool Changer
using Linear Movement

Tool Changer
lock Clamp

using Robot Digital Output

Robotic Arm
retract Clamp from structure

using Linear Movement

(a)

(b)

(c)

(d)

(e)

(f)

Docking Camera locate
accurate position of Clamp
using Set Docking Offset

Robotic Arm
compensate docking offset
using Linear Movement

Clamp extend jaw
to full-open position

using Clamp Rapid Move

Robotic Arm controller
Cancel Docking Offset

(g)

(h)

a b (camera)

c c (camera)

d f

Figure 13: Visual alignment and docking procedures implemented by two special movements: AcqireDockingOffset and

CancelDockingOffset. Left: movement decomposition of action PickClampFromStructure in our case study. Photos on

the right shows the state after correspondingmovements (a,b,c,d,f) are executed. Arrows indicate themovement of the robotic

arm (red in a,c,d) and the clamp jaw (blue in f)

Philipp Eversmann, Fabio Gramazio, and Matthias Kohler. 2017. Robotic prefabrication

of timber structures: towards automated large-scale spatial assembly. Construction
Robotics 1, 1-4 (2017), 49–60.

Augusto Gandia, Stefana Parascho, Romana Rust, Gonzalo Casas, Fabio Gramazio,

and Matthias Kohler. 2018. Towards Automatic Path Planning for Robotically

Assembled Spatial Structures. In Robotic Fabrication in Architecture, Art and Design.
Springer, 59–73.

Caelan Garrett, Yijiang Huang, Tomas Lozano-Pérez, and Caitlin Mueller. 2020a. Scal-

able and Probabilistically Complete Planning for Robotic Spatial Extrusion. In

Robotics: Science and Systems XVI. Robotics: Science and Systems Foundation.

https://doi.org/10.15607/RSS.2020.XVI.092

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver,

Leslie Pack Kaelbling, and Tomas Lozano-Pérez. 2021. Integrated Task and Motion

Planning. Annual review of control, robotics, and autonomous systems 4 (2021).
Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. 2015. Backward-

Forward Search for Manipulation Planning. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Vol. 2015-Decem. https://doi.org/10.1109/

IROS.2015.7354287

Caelan R. Garrett, Tomás Lozano-Pérez, and Leslie P. Kaelbling. 2020b. PDDLStream:

Integrating Symbolic Planners and Blackbox Samplers. In International Conference
on Automated Planning and Scheduling (ICAPS). https://arxiv.org/abs/1802.08705

Caelan Reed C.R. Garrett, Tomás Lozano-Pérez, and L.P. Leslie Pack Kaelbling. 2018.

Sampling-based methods for factored task and motion planning. The Interna-
tional Journal of Robotics Research 37, 13-14 (2018). https://doi.org/10.1177/

0278364918802962

Matthew K Gelber, Greg Hurst, and Rohit Bhargava. 2018. Freeform assembly planning.

IEEE Transactions on Automation Science and Engineering 16, 3 (2018), 1315–1329.

Malik Ghallab, Dana S Nau, and Paolo Traverso. 2004. Automated Planning: Theory
and Practice. Elsevier.

Fabio Gramazio, Kohler Matthias, and Jan Willmann. 2014. The robotic touch. Park
Books.

Norman Hack and Willi Viktor Lauer. 2014. Mesh-Mould: Robotically Fabricated

Spatial Meshes as Reinforced Concrete Formwork. Architectural Design 84, 3 (2014),

44–53.

Kris Hauser and Victor Ng-Thow-Hing. 2011. Randomized multi-modal motion plan-

ning for a humanoid robot manipulation task. International Journal of Robotics
Research (IJRR) 30, 6 (2011), 676–698. http://journals.sagepub.com/doi/abs/10.1177/

0278364910386985

Volker Helm, Jan Willmann, Andreas Thoma, Luka Piškorec, Norman Hack, Fabio Gra-

mazio, and Matthias Kohler. 2015. Iridescence print: Robotically printed lightweight

mesh structures. 3D Printing and Additive Manufacturing 2, 3 (2015), 117–122.

Yijiang Huang, Caelan Garrett, Ian Ting, Stefana Parascho, and Caitlin Mueller. 2021.

Robotic additive construction of bar structures: Unified sequence and motion plan-

ning. Construction Robotics (2021). https://doi.org/10.1007/s41693-021-00062-z

Yijiang Huang, Caelan R Garrett, and Caitlin T Mueller. 2018. Automated sequence and

motion planning for robotic spatial extrusion of 3D trusses. Construction Robotics
2, 1 (12 2018), 15–39. https://doi.org/10.1007/s41693-018-0012-z

Yijiang Huang, Juyong Zhang, Xin Hu, Guoxian Song, Zhongyuan Liu, Lei Yu, and

Ligang Liu. 2016. Framefab: Robotic fabrication of frame shapes. ACM Transactions
on Graphics (TOG) 35, 6 (2016), 224.

Zachary Kingston, Mark Moll, and Lydia E Kavraki. 2018. Sampling-based methods for

motion planningwith constraints. Annual review of control, robotics, and autonomous
systems 1 (2018), 159–185.

A Krontiris and K E Bekris. 2015. Dealing with Difficult Instances of Object Rearrange-

ment. In Robotics: Science and Systems (RSS). Rome, Italy. http://www.cs.rutgers.

edu/~kb572/pubs/Krontiris_Bekris_rearrangement_RSS2015.pdf

James J Kuffner Jr. and Steven M LaValle. 2000. {RRT-Connect}: An efficient approach

to single-query path planning. In IEEE International Conference on Robotics and
Automation (ICRA).

https://doi.org/10.15607/RSS.2020.XVI.092
https://doi.org/10.1109/IROS.2015.7354287
https://doi.org/10.1109/IROS.2015.7354287
https://arxiv.org/abs/1802.08705
https://doi.org/10.1177/0278364918802962
https://doi.org/10.1177/0278364918802962
http://journals.sagepub.com/doi/abs/10.1177/0278364910386985
http://journals.sagepub.com/doi/abs/10.1177/0278364910386985
https://doi.org/10.1007/s41693-021-00062-z
https://doi.org/10.1007/s41693-018-0012-z
http://www.cs.rutgers.edu/~kb572/pubs/Krontiris_Bekris_rearrangement_RSS2015.pdf
http://www.cs.rutgers.edu/~kb572/pubs/Krontiris_Bekris_rearrangement_RSS2015.pdf

The new analog: linking design and construction intent with algorithmic robotic assembly planning SCF ’21, October 28–29, 2021, Virtual Event, USA

Steven M LaValle. 2006. Planning Algorithms. Cambridge University Press. msl.cs.

uiuc.edu/planning

Pok Yin Victor Leung, Aleksandra Anna Apolinarska, Davide Tanadini, Fabio Gramazio,

and Matthias Kohler. 2021. Automatic Assembly of Jointed Timber Structure using

Distributed Robotic Clamps. In PROJECTIONS - Proceedings of the 26th CAADRIA
Conference - Volume 1. Springer, 583–592.

Tomás Lozano-Pérez. 1981. Automatic planning of manipulator transfer movements.

IEEE Transactions on Systems, Man, and Cybernetics 11 (1981), 681–698. http:

//ieeexplore.ieee.org/document/4308589/

Robert McNeel et al. 2010. Rhinoceros 3D, Version 6.0. Robert McNeel & Associates,
Seattle, WA (2010).

Ioanna Mitropoulou, Mathias Bernhard, and Benjamin Dillenburger. 2020. Print

Paths Key-Framing: Design for Non-Planar Layered Robotic FDM Printing. In

Symposium on Computational Fabrication (Virtual Event, USA) (SCF ’20). As-
sociation for Computing Machinery, New York, NY, USA, Article 6, 10 pages.

https://doi.org/10.1145/3424630.3425408

Stefana Parascho. 2019. Cooperative Robotic Assembly: Computational Design and
Robotic Fabrication of Spatial Metal Structures. Doctoral Thesis. ETH Zurich. https:

//doi.org/10.3929/ethz-b-000364322 Accepted: 2019-09-17T07:16:57Z.

R. Rust, G. Casas, S. Parascho, D. Jenny, K. Dörfler, M. Helmreich, A. Gandia, Z. Ma, I.

Ariza, M. Pacher, B. Lytle, and Y. Huang. 2018. COMPAS FAB: Robotic fabrication

package for the COMPAS Framework. https://github.com/compas-dev/compas_fab/.

https://doi.org/10.5281/zenodo.3469478 Gramazio Kohler Research, ETH Zürich.

Thibault Schwartz. 2012. HAL: Extension of a visual programming language to support

teaching and research on robotics applied to construction. In Robotic Fabrication in
Architecture, Art and Design 2012. Springer, 92–101.

Thierry Siméon, Jean-Paul Laumond, Juan Cortés, and Anis Sahbani. 2004. Manip-

ulation planning with probabilistic roadmaps. International Journal of Robotics
Research (IJRR) 23, 7-8 (2004), 729–746.

Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and

Pieter Abbeel. 2014. Combined Task and Motion Planning Through an Extensible

Planner-Independent Interface Layer. In IEEE International Conference on Robotics
and Automation (ICRA).

Mike Stilman. 2010. Global manipulation planning in robot joint space with task

constraints. IEEE Transactions on Robotics 26, 3 (2010), 576–584.
Mike Stilman and James J Kuffner. 2008. Planning Among Movable Obstacles with

Artificial Constraints. The International Journal of Robotics Research 27, 11-12 (2008),
1295–1307.

Ioan A Sucan and Sachin Chitta. 2018. Moveit! http://moveit.ros.org

Andreas Thoma, Arash Adel, Matthias Helmreich, Thomas Wehrle, Fabio Gramazio,

and Matthias Kohler. 2018. Robotic fabrication of bespoke timber frame modules.

In Robotic Fabrication in Architecture, Art and Design. Springer, 447–458.
Marc Toussaint. 2015. Logic-geometric programming: an optimization-based approach

to combined task and motion planning. In IJCAI International Joint Conference on
Artificial Intelligence. AAAI Press, 1930–1936.

Tom Van Mele and many others. 2017-2021. COMPAS: A framework for computational

research in architecture and structures. https://doi.org/10.5281/zenodo.2594510

http://compas.dev.

Randall H Wilson. 1992. On Geometric Assembly Planning. Ph.D. Dissertation. Stanford
University.

Rundong Wu, Huaishu Peng, François Guimbretière, and Steve Marschner. 2016. Print-

ing arbitrary meshes with a 5DOF wireframe printer. ACM Transactions on Graphics
(TOG) 35, 4 (2016), 101.

Zhenwang Yao and Kamal Gupta. 2007. Path planning with general end-effector

constraints. Robotics and Autonomous Systems 55, 4 (2007), 316–327.
Lei Yu, Yijiang Huang, Zhongyuan Liu, Sai Xiao, Ligang Liu, Guoxian Song, and Yanxin

Wang. 2016. Highly Informed Robotic 3D Printed Polygon Mesh: A Novel Strategy

of 3D Spatial Printing. In Proceedings of the 36st Annual Conference of the Association
for Computer Aided Design in Architecture (ACADIA). 298–307.

A APPENDIX: OTHER FORMULATION

EXAMPLES

In this section, we provide two examples of using our flowchart

interface to formulate non-repetitive robotic assembly processes

published by other researchers. Figure 14 describes a multi-robot

assembly process where some robots are used as temporary sup-

port. It is a generalized description from the two-robot steel tube

assembly process by Parascho [2019]. This is different from the

scaffolding approach described in Section 6.1, because the robots

can take turns to support and transfer elements. Figure 15 describes

a robotic fiber winding process by Estrada et al. [2020] where a

robotic arm interfaces with a Cartesian machine.

msl.cs.uiuc.edu/planning
msl.cs.uiuc.edu/planning
http://ieeexplore.ieee.org/document/4308589/
http://ieeexplore.ieee.org/document/4308589/
https://doi.org/10.1145/3424630.3425408
https://doi.org/10.3929/ethz-b-000364322
https://doi.org/10.3929/ethz-b-000364322
https://doi.org/10.5281/zenodo.3469478
http://moveit.ros.org
https://doi.org/10.5281/zenodo.2594510

SCF ’21, October 28–29, 2021, Virtual Event, USA Yijiang Huang, Pok Yin Victor Leung, Caelan Garrett, Fabio Gramazio, Matthias Kohler, and Caitlin Mueller

Process
Starts

Process
Completei = 0

Increment i

i = Current Element To Assemble
N = Total Number of ElementNo

Yes

i < N

Robot x PickElementFromStorage

Robot x PlaceElementToStructure
(Do not release)

If robot j
releases the element,

is partial structure
 still stable?

Robot j ReleaseElement

Yes

No
j < M

j = robot agent index
M = total number of agents

j = 0

No

Select an unoccupied Robot agent x

Increment j

Figure 14: Construction process flowchart for multi-robot assembly processes. This is a generalized version of the process

presented in [Parascho 2019].

The new analog: linking design and construction intent with algorithmic robotic assembly planning SCF ’21, October 28–29, 2021, Virtual Event, USA

R
ob

ot
R

et
rie

ve
B

ob
bi

nF
ro

m
C

N
C

R
ec

ei
ve

r

R
ob

ot
Se

nd
B

ob
bi

nT
oC

N
C

R
ec

ei
ve

r

R
ob

ot
Pu

llE
xt

ra
Le

ng
th

Fi
be

rA
tA

nc
ho

r

Process
Starts

Process
Completei = 0

Increment i

i = Current winding routine
N = Total Number of winding routinesYes

No

i < N

RobotPullFiberOverTargetNode

RobotSendBobbinToCNCReceiver

RobotRetrieveBobbinFromCNCReceiver

CNCReiciverTransportBobbin

No

YesWinding at
the anchors?

RobotPullExtraLengthFiberAtAnchor

RobotWindFiberAroundAnchor

Robotic Arm transit
to Target Node Approach Position

using Free Movement

Robotic Arm
approach CNC Receiver

using Linear Movement (Priority)

CNC Receiver
lock bobbin

using CNC Digital Output

Robotic Arm transit
to Fiber Extension Start Position

using Free Movement

Robotic Arm drag
 fiber to leave fiber rest length

using Linear Movement

Robotic Arm
lock Bobbin

using Robot Digital Output

Robotic Arm
unlock bobbin spool

using Robot Digital Output

Robotic Arm
Unlock Bobbin Spool

using Robot Digital Output

Robotic Arm transit
to CNC Receiver Approach Position

using Free Movement

Robotic Arm
approach CNC Receiver
using Linear Movement

CNC Receiver
unlock bobbin

using Robot Digital Output

Robotic Arm
unlock bobbin from flange

using Robot Digital Output

CNC Receiver
move to receive position
using Linear Movement

Robotic Arm
retract from CNC Receiver
using Linear Movement

Robotic Arm
lock bobbin to flange

using Robot Digital Output

Robotic Arm
retract from CNC Receiver

using Linear Movement (Priority)

Figure 15: Construction process flowchart for spatial fiber winding based on process presented in [Estrada et al. 2020].

	Abstract
	1 Introduction
	2 Challenges and related work
	3 Formulating a Construction Process into a Plan Skeleton: Flowchart Interface
	3.1 High-level Actions
	3.2 Low-level Movements
	3.3 Compiling a Flowchart Into a Plan Skeleton
	3.4 Planning constraint for motion planners

	4 Plan Skeleton Solver
	4.1 Linear Sequential Solver
	4.2 Nonlinear Solver

	5 Software Implementation and Runtime results
	6 Extending our Formulation for Practical Issues in Construction
	6.1 Inclusion of Temporary Scaffolding
	6.2 Executing Paths with Controlled Collision
	6.3 Online Visual Alignment

	7 Conclusions and Future Work
	References
	A Appendix: Other formulation examples

